EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Numerical Methods for Elliptic and Parabolic Partial Differential Equations

Download or read book Numerical Methods for Elliptic and Parabolic Partial Differential Equations written by Peter Knabner and published by Springer Science & Business Media. This book was released on 2003-06-26 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text provides an application oriented introduction to the numerical methods for partial differential equations. It covers finite difference, finite element, and finite volume methods, interweaving theory and applications throughout. The book examines modern topics such as adaptive methods, multilevel methods, and methods for convection-dominated problems and includes detailed illustrations and extensive exercises.

Book Numerical Methods for Solving Linear Systems and Applications to Elliptic Difference Equations

Download or read book Numerical Methods for Solving Linear Systems and Applications to Elliptic Difference Equations written by Clarence Edgar Lee and published by . This book was released on 1959 with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt: Iterative numerical methods for solving independent, simultaneous, inhomogeneous linear equations are surveyed. Application of the methods to elliptic difference equations as arise in neutron diffasion, heat conduction, and potential problems is discussed.

Book Finite Difference Methods for Ordinary and Partial Differential Equations

Download or read book Finite Difference Methods for Ordinary and Partial Differential Equations written by Randall J. LeVeque and published by SIAM. This book was released on 2007-01-01 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.

Book Numerical Solution of Partial Differential Equations by the Finite Element Method

Download or read book Numerical Solution of Partial Differential Equations by the Finite Element Method written by Claes Johnson and published by Courier Corporation. This book was released on 2012-05-23 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.

Book Partial Differential Equations with Numerical Methods

Download or read book Partial Differential Equations with Numerical Methods written by Stig Larsson and published by Springer Science & Business Media. This book was released on 2008-12-05 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main theme is the integration of the theory of linear PDE and the theory of finite difference and finite element methods. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. The chapters on elliptic equations are preceded by a chapter on the two-point boundary value problem for ordinary differential equations. Similarly, the chapters on time-dependent problems are preceded by a chapter on the initial-value problem for ordinary differential equations. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. The required background on linear functional analysis and Sobolev spaces is reviewed in an appendix. The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering.

Book Numerical Analysis of Partial Differential Equations

Download or read book Numerical Analysis of Partial Differential Equations written by S. H, Lui and published by John Wiley & Sons. This book was released on 2012-01-10 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: A balanced guide to the essential techniques for solving elliptic partial differential equations Numerical Analysis of Partial Differential Equations provides a comprehensive, self-contained treatment of the quantitative methods used to solve elliptic partial differential equations (PDEs), with a focus on the efficiency as well as the error of the presented methods. The author utilizes coverage of theoretical PDEs, along with the nu merical solution of linear systems and various examples and exercises, to supply readers with an introduction to the essential concepts in the numerical analysis of PDEs. The book presents the three main discretization methods of elliptic PDEs: finite difference, finite elements, and spectral methods. Each topic has its own devoted chapters and is discussed alongside additional key topics, including: The mathematical theory of elliptic PDEs Numerical linear algebra Time-dependent PDEs Multigrid and domain decomposition PDEs posed on infinite domains The book concludes with a discussion of the methods for nonlinear problems, such as Newton's method, and addresses the importance of hands-on work to facilitate learning. Each chapter concludes with a set of exercises, including theoretical and programming problems, that allows readers to test their understanding of the presented theories and techniques. In addition, the book discusses important nonlinear problems in many fields of science and engineering, providing information as to how they can serve as computing projects across various disciplines. Requiring only a preliminary understanding of analysis, Numerical Analysis of Partial Differential Equations is suitable for courses on numerical PDEs at the upper-undergraduate and graduate levels. The book is also appropriate for students majoring in the mathematical sciences and engineering.

Book Elliptic Differential Equations

Download or read book Elliptic Differential Equations written by W. Hackbusch and published by Springer Science & Business Media. This book was released on 1992 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Derived from a lecture series for college mathematics students, introduces the methods of dealing with elliptical boundary-value problems--both the theory and the numerical analysis. Includes exercises. Translated and somewhat expanded from the 1987 German version. Annotation copyright by Book News, Inc., Portland, OR

Book Iterative Methods for Sparse Linear Systems

Download or read book Iterative Methods for Sparse Linear Systems written by Yousef Saad and published by SIAM. This book was released on 2003-04-01 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Computing -- General.

Book Iterative Methods and Preconditioners for Systems of Linear Equations

Download or read book Iterative Methods and Preconditioners for Systems of Linear Equations written by Gabriele Ciaramella and published by SIAM. This book was released on 2022-02-08 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: Iterative methods use successive approximations to obtain more accurate solutions. This book gives an introduction to iterative methods and preconditioning for solving discretized elliptic partial differential equations and optimal control problems governed by the Laplace equation, for which the use of matrix-free procedures is crucial. All methods are explained and analyzed starting from the historical ideas of the inventors, which are often quoted from their seminal works. Iterative Methods and Preconditioners for Systems of Linear Equations grew out of a set of lecture notes that were improved and enriched over time, resulting in a clear focus for the teaching methodology, which derives complete convergence estimates for all methods, illustrates and provides MATLAB codes for all methods, and studies and tests all preconditioners first as stationary iterative solvers. This textbook is appropriate for undergraduate and graduate students who want an overview or deeper understanding of iterative methods. Its focus on both analysis and numerical experiments allows the material to be taught with very little preparation, since all the arguments are self-contained, and makes it appropriate for self-study as well. It can be used in courses on iterative methods, Krylov methods and preconditioners, and numerical optimal control. Scientists and engineers interested in new topics and applications will also find the text useful.

Book Variational Methods for the Numerical Solution of Nonlinear Elliptic Problem

Download or read book Variational Methods for the Numerical Solution of Nonlinear Elliptic Problem written by Roland Glowinski and published by SIAM. This book was released on 2015-11-04 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: Variational Methods for the Numerical Solution of Nonlinear Elliptic Problems?addresses computational methods that have proven efficient for the solution of a large variety of nonlinear elliptic problems. These methods can be applied to many problems in science and engineering, but this book focuses on their application to problems in continuum mechanics and physics. This book differs from others on the topic by presenting examples of the power and versatility of operator-splitting methods; providing a detailed introduction to alternating direction methods of multipliers and their applicability to the solution of nonlinear (possibly nonsmooth) problems from science and engineering; and showing that nonlinear least-squares methods, combined with operator-splitting and conjugate gradient algorithms, provide efficient tools for the solution of highly nonlinear problems. The book provides useful insights suitable for advanced graduate students, faculty, and researchers in applied and computational mathematics as well as research engineers, mathematical physicists, and systems engineers.

Book Numerical Methods for Grid Equations

Download or read book Numerical Methods for Grid Equations written by A.A. Samarskij and published by Springer Science & Business Media. This book was released on 1988-12-01 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: The finite-difference solution of mathematical-physics differential equations is carried out in two stages: 1) the writing of the difference scheme (a differ ence approximation to the differential equation on a grid), 2) the computer solution of the difference equations, which are written in the form of a high order system of linear algebraic equations of special form (ill-conditioned, band-structured). Application of general linear algebra methods is not always appropriate for such systems because of the need to store a large volume of information, as well as because of the large amount of work required by these methods. For the solution of difference equations, special methods have been developed which, in one way or another, take into account special features of the problem, and which allow the solution to be found using less work than via the general methods. This work is an extension of the book Difference M ethod3 for the Solution of Elliptic Equation3 by A. A. Samarskii and V. B. Andreev which considered a whole set of questions connected with difference approximations, the con struction of difference operators, and estimation of the ~onvergence rate of difference schemes for typical elliptic boundary-value problems. Here we consider only solution methods for difference equations. The book in fact consists of two volumes.

Book Numerical Solution of Hyperbolic Partial Differential Equations

Download or read book Numerical Solution of Hyperbolic Partial Differential Equations written by John A. Trangenstein and published by Cambridge University Press. This book was released on 2009-09-03 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Solution of Hyperbolic Partial Differential Equations is a new type of graduate textbook, with both print and interactive electronic components (on CD). It is a comprehensive presentation of modern shock-capturing methods, including both finite volume and finite element methods, covering the theory of hyperbolic conservation laws and the theory of the numerical methods. The range of applications is broad enough to engage most engineering disciplines and many areas of applied mathematics. Classical techniques for judging the qualitative performance of the schemes are used to motivate the development of classical higher-order methods. The interactive CD gives access to the computer code used to create all of the text's figures, and lets readers run simulations, choosing their own input parameters; the CD displays the results of the experiments as movies. Consequently, students can gain an appreciation for both the dynamics of the problem application, and the growth of numerical errors.

Book Handbook of Nonlinear Partial Differential Equations

Download or read book Handbook of Nonlinear Partial Differential Equations written by Andrei D. Polyanin and published by CRC Press. This book was released on 2004-06-02 with total page 835 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Nonlinear Partial Differential Equations is the latest in a series of acclaimed handbooks by these authors and presents exact solutions of more than 1600 nonlinear equations encountered in science and engineering--many more than any other book available. The equations include those of parabolic, hyperbolic, elliptic and other types, and the authors pay special attention to equations of general form that involve arbitrary functions. A supplement at the end of the book discusses the classical and new methods for constructing exact solutions to nonlinear equations. To accommodate different mathematical backgrounds, the authors avoid wherever possible the use of special terminology, outline some of the methods in a schematic, simplified manner, and arrange the equations in increasing order of complexity. Highlights of the Handbook:

Book Numerical Approximation Methods for Elliptic Boundary Value Problems

Download or read book Numerical Approximation Methods for Elliptic Boundary Value Problems written by Olaf Steinbach and published by Springer Science & Business Media. This book was released on 2007-12-22 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a unified theory of the Finite Element Method and the Boundary Element Method for a numerical solution of second order elliptic boundary value problems. This includes the solvability, stability, and error analysis as well as efficient methods to solve the resulting linear systems. Applications are the potential equation, the system of linear elastostatics and the Stokes system. While there are textbooks on the finite element method, this is one of the first books on Theory of Boundary Element Methods. It is suitable for self study and exercises are included.

Book NBS Special Publication

Download or read book NBS Special Publication written by and published by . This book was released on 1965 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Approximation of Partial Differential Equations

Download or read book Numerical Approximation of Partial Differential Equations written by Sören Bartels and published by Springer. This book was released on 2016-06-02 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finite element methods for approximating partial differential equations have reached a high degree of maturity, and are an indispensible tool in science and technology. This textbook aims at providing a thorough introduction to the construction, analysis, and implementation of finite element methods for model problems arising in continuum mechanics. The first part of the book discusses elementary properties of linear partial differential equations along with their basic numerical approximation, the functional-analytical framework for rigorously establishing existence of solutions, and the construction and analysis of basic finite element methods. The second part is devoted to the optimal adaptive approximation of singularities and the fast iterative solution of linear systems of equations arising from finite element discretizations. In the third part, the mathematical framework for analyzing and discretizing saddle-point problems is formulated, corresponding finte element methods are analyzed, and particular applications including incompressible elasticity, thin elastic objects, electromagnetism, and fluid mechanics are addressed. The book includes theoretical problems and practical projects for all chapters, and an introduction to the implementation of finite element methods.

Book Numerical Solution of Differential Equations

Download or read book Numerical Solution of Differential Equations written by Zhilin Li and published by Cambridge University Press. This book was released on 2017-11-30 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical and concise guide to finite difference and finite element methods. Well-tested MATLAB® codes are available online.