EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Numerical Methods for Mixed Finite Element Problems

Download or read book Numerical Methods for Mixed Finite Element Problems written by Jean Deteix and published by Springer Nature. This book was released on 2022-09-24 with total page 119 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on iterative solvers and preconditioners for mixed finite element methods. It provides an overview of some of the state-of-the-art solvers for discrete systems with constraints such as those which arise from mixed formulations. Starting by recalling the basic theory of mixed finite element methods, the book goes on to discuss the augmented Lagrangian method and gives a summary of the standard iterative methods, describing their usage for mixed methods. Here, preconditioners are built from an approximate factorisation of the mixed system. A first set of applications is considered for incompressible elasticity problems and flow problems, including non-linear models. An account of the mixed formulation for Dirichlet’s boundary conditions is then given before turning to contact problems, where contact between incompressible bodies leads to problems with two constraints. This book is aimed at graduate students and researchers in the field of numerical methods and scientific computing.

Book A Simple Introduction to the Mixed Finite Element Method

Download or read book A Simple Introduction to the Mixed Finite Element Method written by Gabriel N. Gatica and published by Springer Science & Business Media. This book was released on 2014-01-09 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main purpose of this book is to provide a simple and accessible introduction to the mixed finite element method as a fundamental tool to numerically solve a wide class of boundary value problems arising in physics and engineering sciences. The book is based on material that was taught in corresponding undergraduate and graduate courses at the Universidad de Concepcion, Concepcion, Chile, during the last 7 years. As compared with several other classical books in the subject, the main features of the present one have to do, on one hand, with an attempt of presenting and explaining most of the details in the proofs and in the different applications. In particular several results and aspects of the corresponding analysis that are usually available only in papers or proceedings are included here.

Book Mixed Finite Element Methods and Applications

Download or read book Mixed Finite Element Methods and Applications written by Daniele Boffi and published by Springer Science & Business Media. This book was released on 2013-07-02 with total page 692 pages. Available in PDF, EPUB and Kindle. Book excerpt: Non-standard finite element methods, in particular mixed methods, are central to many applications. In this text the authors, Boffi, Brezzi and Fortin present a general framework, starting with a finite dimensional presentation, then moving on to formulation in Hilbert spaces and finally considering approximations, including stabilized methods and eigenvalue problems. This book also provides an introduction to standard finite element approximations, followed by the construction of elements for the approximation of mixed formulations in H(div) and H(curl). The general theory is applied to some classical examples: Dirichlet's problem, Stokes' problem, plate problems, elasticity and electromagnetism.

Book The Finite Element Method for Elliptic Problems

Download or read book The Finite Element Method for Elliptic Problems written by P.G. Ciarlet and published by Elsevier. This book was released on 1978-01-01 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of this book is to analyze within reasonable limits (it is not a treatise) the basic mathematical aspects of the finite element method. The book should also serve as an introduction to current research on this subject. On the one hand, it is also intended to be a working textbook for advanced courses in Numerical Analysis, as typically taught in graduate courses in American and French universities. For example, it is the author’s experience that a one-semester course (on a three-hour per week basis) can be taught from Chapters 1, 2 and 3 (with the exception of Section 3.3), while another one-semester course can be taught from Chapters 4 and 6. On the other hand, it is hoped that this book will prove to be useful for researchers interested in advanced aspects of the numerical analysis of the finite element method. In this respect, Section 3.3, Chapters 5, 7 and 8, and the sections on “Additional Bibliography and Comments should provide many suggestions for conducting seminars.

Book Numerical Solution of Partial Differential Equations by the Finite Element Method

Download or read book Numerical Solution of Partial Differential Equations by the Finite Element Method written by Claes Johnson and published by Courier Corporation. This book was released on 2012-05-23 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.

Book Mixed and Hybrid Finite Element Methods

Download or read book Mixed and Hybrid Finite Element Methods written by Franco Brezzi and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research on non-standard finite element methods is evolving rapidly and in this text Brezzi and Fortin give a general framework in which the development is taking place. The presentation is built around a few classic examples: Dirichlet's problem, Stokes problem, Linear elasticity. The authors provide with this publication an analysis of the methods in order to understand their properties as thoroughly as possible.

Book The Mathematical Theory of Finite Element Methods

Download or read book The Mathematical Theory of Finite Element Methods written by Susanne Brenner and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: A rigorous and thorough mathematical introduction to the subject; A clear and concise treatment of modern fast solution techniques such as multigrid and domain decomposition algorithms; Second edition contains two new chapters, as well as many new exercises; Previous edition sold over 3000 copies worldwide

Book Mixed Finite Elements  Compatibility Conditions  and Applications

Download or read book Mixed Finite Elements Compatibility Conditions and Applications written by Daniele Boffi and published by Springer. This book was released on 2008-04-01 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the early 70's, mixed finite elements have been the object of a wide and deep study by the mathematical and engineering communities. The fundamental role of this method for many application fields has been worldwide recognized and its use has been introduced in several commercial codes. An important feature of mixed finite elements is the interplay between theory and application. Discretization spaces for mixed schemes require suitable compatibilities, so that simple minded approximations generally do not work and the design of appropriate stabilizations gives rise to challenging mathematical problems. This volume collects the lecture notes of a C.I.M.E. course held in Summer 2006, when some of the most world recognized experts in the field reviewed the rigorous setting of mixed finite elements and revisited it after more than 30 years of practice. Applications, in this volume, range from traditional ones, like fluid-dynamics or elasticity, to more recent and active fields, like electromagnetism.

Book Introduction to Numerical Methods for Variational Problems

Download or read book Introduction to Numerical Methods for Variational Problems written by Hans Petter Langtangen and published by Springer Nature. This book was released on 2019-09-26 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook teaches finite element methods from a computational point of view. It focuses on how to develop flexible computer programs with Python, a programming language in which a combination of symbolic and numerical tools is used to achieve an explicit and practical derivation of finite element algorithms. The finite element library FEniCS is used throughout the book, but the content is provided in sufficient detail to ensure that students with less mathematical background or mixed programming-language experience will equally benefit. All program examples are available on the Internet.

Book Mathematical Foundations of Finite Elements and Iterative Solvers

Download or read book Mathematical Foundations of Finite Elements and Iterative Solvers written by SCI085000 and published by SIAM. This book was released on 2022-06-27 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: “This book combines an updated look, at an advanced level, of the mathematical theory of the finite element method (including some important recent developments), and a presentation of many of the standard iterative methods for the numerical solution of the linear system of equations that results from finite element discretization, including saddle point problems arising from mixed finite element approximation. For the reader with some prior background in the subject, this text clarifies the importance of the essential ideas and provides a deeper understanding of how the basic concepts fit together.” — Richard S. Falk, Rutgers University “Students of applied mathematics, engineering, and science will welcome this insightful and carefully crafted introduction to the mathematics of finite elements and to algorithms for iterative solvers. Concise, descriptive, and entertaining, the text covers all of the key mathematical ideas and concepts dealing with finite element approximations of problems in mechanics and physics governed by partial differential equations while interweaving basic concepts on Sobolev spaces and basic theorems of functional analysis presented in an effective tutorial style.” — J. Tinsley Oden, The University of Texas at Austin This textbook describes the mathematical principles of the finite element method, a technique that turns a (linear) partial differential equation into a discrete linear system, often amenable to fast linear algebra. Reflecting the author’s decade of experience in the field, Mathematical Foundations of Finite Elements and Iterative Solvers examines the crucial interplay between analysis, discretization, and computations in modern numerical analysis; furthermore, it recounts historical developments leading to current state-of-the-art techniques. While self-contained, this textbook provides a clear and in-depth discussion of several topics, including elliptic problems, continuous Galerkin methods, iterative solvers, advection-diffusion problems, and saddle point problems. Accessible to readers with a beginning background in functional analysis and linear algebra, this text can be used in graduate-level courses on advanced numerical analysis, data science, numerical optimization, and approximation theory. Professionals in numerical analysis and finite element methods will also find the book of interest.

Book Mixed Finite Element Technologies

Download or read book Mixed Finite Element Technologies written by Peter Wriggers and published by Springer Science & Business Media. This book was released on 2009-06-16 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mixed finite element methods are a tool to solve complex engineering problems of different nature. This subject is treated in the volume from the engineering and the mathematical point. Different applications are considered which depict the value of mixed formulations in engineering on one side. On the other side the mathematical background is provided including proofs of convergence and stability of these methods and adequate solvers for mixed problems are discussed. This broad spectrum yields an indepth treatment of mixed methods from different perspectives.

Book Mixed Finite Element Method

Download or read book Mixed Finite Element Method written by Apostol Poceski and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, based on 16 years of work on the finite element method, the author presents the essence of a new, direct approach to the FEM. The work is focused on the mixed method and shows how reliable results may be obtained with fewer equations than usual. The basic principles, the fundamentals and the essence of the FEM are presented, then the method is applied to the analysis of one, two, and three-dimensional problems. It is shown that mixed elements offer superior accuracy compared with stiffness elements. Finally, some new achievements and perspectives for further development are presented. The book is intended for undergraduate and graduate students, mathematicians, research engineers and practicing engineers. To understand the book, a familiarity with classical mechanics is sufficient.

Book Hybrid and Mixed Finite Element Methods

Download or read book Hybrid and Mixed Finite Element Methods written by Satya N. Atluri and published by John Wiley & Sons. This book was released on 1983 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Finite Element Methods for Navier Stokes Equations

Download or read book Finite Element Methods for Navier Stokes Equations written by Vivette Girault and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: The material covered by this book has been taught by one of the authors in a post-graduate course on Numerical Analysis at the University Pierre et Marie Curie of Paris. It is an extended version of a previous text (cf. Girault & Raviart [32J) published in 1979 by Springer-Verlag in its series: Lecture Notes in Mathematics. In the last decade, many engineers and mathematicians have concentrated their efforts on the finite element solution of the Navier-Stokes equations for incompressible flows. The purpose of this book is to provide a fairly comprehen sive treatment of the most recent developments in that field. To stay within reasonable bounds, we have restricted ourselves to the case of stationary prob lems although the time-dependent problems are of fundamental importance. This topic is currently evolving rapidly and we feel that it deserves to be covered by another specialized monograph. We have tried, to the best of our ability, to present a fairly exhaustive treatment of the finite element methods for inner flows. On the other hand however, we have entirely left out the subject of exterior problems which involve radically different techniques, both from a theoretical and from a practical point of view. Also, we have neither discussed the implemen tation of the finite element methods presented by this book, nor given any explicit numerical result. This field is extensively covered by Peyret & Taylor [64J and Thomasset [82].

Book Fundamentals of Finite Element Analysis

Download or read book Fundamentals of Finite Element Analysis written by Ioannis Koutromanos and published by John Wiley & Sons. This book was released on 2018-02-12 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introductory textbook covering the fundamentals of linear finite element analysis (FEA) This book constitutes the first volume in a two-volume set that introduces readers to the theoretical foundations and the implementation of the finite element method (FEM). The first volume focuses on the use of the method for linear problems. A general procedure is presented for the finite element analysis (FEA) of a physical problem, where the goal is to specify the values of a field function. First, the strong form of the problem (governing differential equations and boundary conditions) is formulated. Subsequently, a weak form of the governing equations is established. Finally, a finite element approximation is introduced, transforming the weak form into a system of equations where the only unknowns are nodal values of the field function. The procedure is applied to one-dimensional elasticity and heat conduction, multi-dimensional steady-state scalar field problems (heat conduction, chemical diffusion, flow in porous media), multi-dimensional elasticity and structural mechanics (beams/shells), as well as time-dependent (dynamic) scalar field problems, elastodynamics and structural dynamics. Important concepts for finite element computations, such as isoparametric elements for multi-dimensional analysis and Gaussian quadrature for numerical evaluation of integrals, are presented and explained. Practical aspects of FEA and advanced topics, such as reduced integration procedures, mixed finite elements and verification and validation of the FEM are also discussed. Provides detailed derivations of finite element equations for a variety of problems. Incorporates quantitative examples on one-dimensional and multi-dimensional FEA. Provides an overview of multi-dimensional linear elasticity (definition of stress and strain tensors, coordinate transformation rules, stress-strain relation and material symmetry) before presenting the pertinent FEA procedures. Discusses practical and advanced aspects of FEA, such as treatment of constraints, locking, reduced integration, hourglass control, and multi-field (mixed) formulations. Includes chapters on transient (step-by-step) solution schemes for time-dependent scalar field problems and elastodynamics/structural dynamics. Contains a chapter dedicated to verification and validation for the FEM and another chapter dedicated to solution of linear systems of equations and to introductory notions of parallel computing. Includes appendices with a review of matrix algebra and overview of matrix analysis of discrete systems. Accompanied by a website hosting an open-source finite element program for linear elasticity and heat conduction, together with a user tutorial. Fundamentals of Finite Element Analysis: Linear Finite Element Analysis is an ideal text for undergraduate and graduate students in civil, aerospace and mechanical engineering, finite element software vendors, as well as practicing engineers and anybody with an interest in linear finite element analysis.

Book Numerical Methods in Finite Element Analysis

Download or read book Numerical Methods in Finite Element Analysis written by Klaus-Jürgen Bathe and published by Prentice Hall. This book was released on 1976 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Recent Progress in Computational and Applied PDES

Download or read book Recent Progress in Computational and Applied PDES written by Tony F. Chan and published by Springer Science & Business Media. This book was released on 2002 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book discusses some key scientific and technological developments in computational and applied partial differential equations. It covers many areas of scientific computing, including multigrid methods, image processing, finite element analysis and adaptive computations. It also covers software technology, algorithms and applications. Most papers are of research level, and are contributed by some well-known mathematicians and computer scientists. The book will be useful to engineers, computational scientists and graduate students.