Download or read book Numerical Solutions of Initial Value Problems Using Mathematica written by Sujaul Chowdhury and published by Morgan & Claypool Publishers. This book was released on 2018-06-06 with total page 64 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book contains a detailed account of numerical solutions of differential equations of elementary problems of Physics using Euler and 2nd order Runge-Kutta methods and Mathematica 6.0. The problems are motion under constant force (free fall), motion under Hooke's law force (simple harmonic motion), motion under combination of Hooke's law force and a velocity dependent damping force (damped harmonic motion) and radioactive decay law. Also included are uses of Mathematica in dealing with complex numbers, in solving system of linear equations, in carrying out differentiation and integration, and in dealing with matrices.
Download or read book Numerical Methods for Ordinary Differential Equations written by David F. Griffiths and published by Springer Science & Business Media. This book was released on 2010-11-11 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Methods for Ordinary Differential Equations is a self-contained introduction to a fundamental field of numerical analysis and scientific computation. Written for undergraduate students with a mathematical background, this book focuses on the analysis of numerical methods without losing sight of the practical nature of the subject. It covers the topics traditionally treated in a first course, but also highlights new and emerging themes. Chapters are broken down into `lecture' sized pieces, motivated and illustrated by numerous theoretical and computational examples. Over 200 exercises are provided and these are starred according to their degree of difficulty. Solutions to all exercises are available to authorized instructors. The book covers key foundation topics: o Taylor series methods o Runge--Kutta methods o Linear multistep methods o Convergence o Stability and a range of modern themes: o Adaptive stepsize selection o Long term dynamics o Modified equations o Geometric integration o Stochastic differential equations The prerequisite of a basic university-level calculus class is assumed, although appropriate background results are also summarized in appendices. A dedicated website for the book containing extra information can be found via www.springer.com
Download or read book Numerical Methods for Initial Value Problems in Physics written by Francisco S. Guzmán and published by Springer Nature. This book was released on 2023-08-23 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is a comprehensive overview of the construction, implementation, and application of important numerical methods for the solution of Initial Value Problems (IVPs). Beginning with IVPs involving Ordinary Differential Equations (ODEs) and progressing to problems with Partial Differential Equations (PDEs) in 1+1 and 3+1 dimensions, it provides readers with a clear and systematic progression from simple to complex concepts. The numerical methods selected in this textbook can solve a considerable variety of problems and the applications presented cover a wide range of topics, including population dynamics, chaos, celestial mechanics, geophysics, astrophysics, and more. Each chapter contains a variety of solved problems and exercises, with code included. These examples are designed to motivate and inspire readers to delve deeper into the state-of-the-art problems in their own fields. The code is written in Fortran 90, in a library-free style, making them easy to program and efficient to run. The appendix also includes the same code in C++, making the book accessible to a variety of programming backgrounds. At the end of each chapter, there are brief descriptions of how the methods could be improved, along with one or two projects that can be developed with the methods and codes described. These projects are highly engaging, from synchronization of chaos and message encryption to gravitational waves emitted by a binary system and non-linear absorption of a scalar field. With its clear explanations, hands-on approach, and practical examples, this textbook is an essential resource for advanced undergraduate and graduate students who want to the learn how to use numerical methods to tackle challenging problems.
Download or read book Numerical Methods for Ordinary Differential Equations written by J. C. Butcher and published by John Wiley & Sons. This book was released on 2004-08-20 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new book updates the exceptionally popular Numerical Analysis of Ordinary Differential Equations. "This book is...an indispensible reference for any researcher."-American Mathematical Society on the First Edition. Features: * New exercises included in each chapter. * Author is widely regarded as the world expert on Runge-Kutta methods * Didactic aspects of the book have been enhanced by interspersing the text with exercises. * Updated Bibliography.
Download or read book Partial Differential Equations with Numerical Methods written by Stig Larsson and published by Springer Science & Business Media. This book was released on 2008-12-05 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main theme is the integration of the theory of linear PDE and the theory of finite difference and finite element methods. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. The chapters on elliptic equations are preceded by a chapter on the two-point boundary value problem for ordinary differential equations. Similarly, the chapters on time-dependent problems are preceded by a chapter on the initial-value problem for ordinary differential equations. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. The required background on linear functional analysis and Sobolev spaces is reviewed in an appendix. The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering.
Download or read book Numerical Methods for Evolutionary Differential Equations written by Uri M. Ascher and published by SIAM. This book was released on 2008-09-04 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: Develops, analyses, and applies numerical methods for evolutionary, or time-dependent, differential problems.
Download or read book Numerical Methods for Solving Inverse Problems of Mathematical Physics written by A. A. Samarskii and published by Walter de Gruyter. This book was released on 2008-08-27 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main classes of inverse problems for equations of mathematical physics and their numerical solution methods are considered in this book which is intended for graduate students and experts in applied mathematics, computational mathematics, and mathematical modelling.
Download or read book Numerical Methods for Elliptic and Parabolic Partial Differential Equations written by Peter Knabner and published by Springer Science & Business Media. This book was released on 2003-06-26 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text provides an application oriented introduction to the numerical methods for partial differential equations. It covers finite difference, finite element, and finite volume methods, interweaving theory and applications throughout. The book examines modern topics such as adaptive methods, multilevel methods, and methods for convection-dominated problems and includes detailed illustrations and extensive exercises.
Download or read book Numerical Methods written by Anne Greenbaum and published by Princeton University Press. This book was released on 2012-04-01 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: A rigorous and comprehensive introduction to numerical analysis Numerical Methods provides a clear and concise exploration of standard numerical analysis topics, as well as nontraditional ones, including mathematical modeling, Monte Carlo methods, Markov chains, and fractals. Filled with appealing examples that will motivate students, the textbook considers modern application areas, such as information retrieval and animation, and classical topics from physics and engineering. Exercises use MATLAB and promote understanding of computational results. The book gives instructors the flexibility to emphasize different aspects—design, analysis, or computer implementation—of numerical algorithms, depending on the background and interests of students. Designed for upper-division undergraduates in mathematics or computer science classes, the textbook assumes that students have prior knowledge of linear algebra and calculus, although these topics are reviewed in the text. Short discussions of the history of numerical methods are interspersed throughout the chapters. The book also includes polynomial interpolation at Chebyshev points, use of the MATLAB package Chebfun, and a section on the fast Fourier transform. Supplementary materials are available online. Clear and concise exposition of standard numerical analysis topics Explores nontraditional topics, such as mathematical modeling and Monte Carlo methods Covers modern applications, including information retrieval and animation, and classical applications from physics and engineering Promotes understanding of computational results through MATLAB exercises Provides flexibility so instructors can emphasize mathematical or applied/computational aspects of numerical methods or a combination Includes recent results on polynomial interpolation at Chebyshev points and use of the MATLAB package Chebfun Short discussions of the history of numerical methods interspersed throughout Supplementary materials available online
Download or read book Numerical Solution of Ordinary Differential Equations written by Kendall Atkinson and published by John Wiley & Sons. This book was released on 2011-10-24 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise introduction to numerical methodsand the mathematicalframework neededto understand their performance Numerical Solution of Ordinary Differential Equationspresents a complete and easy-to-follow introduction to classicaltopics in the numerical solution of ordinary differentialequations. The book's approach not only explains the presentedmathematics, but also helps readers understand how these numericalmethods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringingtogether and categorizing different types of problems in order tohelp readers comprehend the applications of ordinary differentialequations. In addition, the authors' collective academic experienceensures a coherent and accessible discussion of key topics,including: Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to testand build their knowledge of the presented methods, and a relatedWeb site features MATLAB® programs that facilitate theexploration of numerical methods in greater depth. Detailedreferences outline additional literature on both analytical andnumerical aspects of ordinary differential equations for furtherexploration of individual topics. Numerical Solution of Ordinary Differential Equations isan excellent textbook for courses on the numerical solution ofdifferential equations at the upper-undergraduate and beginninggraduate levels. It also serves as a valuable reference forresearchers in the fields of mathematics and engineering.
Download or read book The Boundary Value Problems of Mathematical Physics written by O.A. Ladyzhenskaya and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the present edition I have included "Supplements and Problems" located at the end of each chapter. This was done with the aim of illustrating the possibilities of the methods contained in the book, as well as with the desire to make good on what I have attempted to do over the course of many years for my students-to awaken their creativity, providing topics for independent work. The source of my own initial research was the famous two-volume book Methods of Mathematical Physics by D. Hilbert and R. Courant, and a series of original articles and surveys on partial differential equations and their applications to problems in theoretical mechanics and physics. The works of K. o. Friedrichs, which were in keeping with my own perception of the subject, had an especially strong influence on me. I was guided by the desire to prove, as simply as possible, that, like systems of n linear algebraic equations in n unknowns, the solvability of basic boundary value (and initial-boundary value) problems for partial differential equations is a consequence of the uniqueness theorems in a "sufficiently large" function space. This desire was successfully realized thanks to the introduction of various classes of general solutions and to an elaboration of the methods of proof for the corresponding uniqueness theorems. This was accomplished on the basis of comparatively simple integral inequalities for arbitrary functions and of a priori estimates of the solutions of the problems without enlisting any special representations of those solutions.
Download or read book Numerical Methods for Physics written by Alejando L. Garcia and published by Createspace Independent Publishing Platform. This book was released on 2015-06-06 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers a broad spectrum of the most important, basic numerical and analytical techniques used in physics -including ordinary and partial differential equations, linear algebra, Fourier transforms, integration and probability. Now language-independent. Features attractive new 3-D graphics. Offers new and significantly revised exercises. Replaces FORTRAN listings with C++, with updated versions of the FORTRAN programs now available on-line. Devotes a third of the book to partial differential equations-e.g., Maxwell's equations, the diffusion equation, the wave equation, etc. This numerical analysis book is designed for the programmer with a physics background. Previously published by Prentice Hall / Addison-Wesley
Download or read book Introduction to Numerical Methods in Differential Equations written by Mark H. Holmes and published by Springer Science & Business Media. This book was released on 2007-04-05 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book shows how to derive, test and analyze numerical methods for solving differential equations, including both ordinary and partial differential equations. The objective is that students learn to solve differential equations numerically and understand the mathematical and computational issues that arise when this is done. Includes an extensive collection of exercises, which develop both the analytical and computational aspects of the material. In addition to more than 100 illustrations, the book includes a large collection of supplemental material: exercise sets, MATLAB computer codes for both student and instructor, lecture slides and movies.
Download or read book Numerical Solution of Nonlinear Boundary Value Problems with Applications written by Milan Kubicek and published by Courier Corporation. This book was released on 2008-01-01 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: A survey of the development, analysis, and application of numerical techniques in solving nonlinear boundary value problems, this text presents numerical analysis as a working tool for physicists and engineers. Starting with a survey of accomplishments in the field, it explores initial and boundary value problems for ordinary differential equations, linear boundary value problems, and the numerical realization of parametric studies in nonlinear boundary value problems. The authors--Milan Kubicek, Professor at the Prague Institute of Chemical Technology, and Vladimir Hlavacek, Professor at the University of Buffalo--emphasize the description and straightforward application of numerical techniques rather than underlying theory. This approach reflects their extensive experience with the application of diverse numerical algorithms.
Download or read book Physics of Oscillations and Waves written by Arnt Inge Vistnes and published by Springer. This book was released on 2018-08-21 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this textbook a combination of standard mathematics and modern numerical methods is used to describe a wide range of natural wave phenomena, such as sound, light and water waves, particularly in specific popular contexts, e.g. colors or the acoustics of musical instruments. It introduces the reader to the basic physical principles that allow the description of the oscillatory motion of matter and classical fields, as well as resulting concepts including interference, diffraction, and coherence. Numerical methods offer new scientific insights and make it possible to handle interesting cases that can’t readily be addressed using analytical mathematics; this holds true not only for problem solving but also for the description of phenomena. Essential physical parameters are brought more into focus, rather than concentrating on the details of which mathematical trick should be used to obtain a certain solution. Readers will learn how time-resolved frequency analysis offers a deeper understanding of the interplay between frequency and time, which is relevant to many phenomena involving oscillations and waves. Attention is also drawn to common misconceptions resulting from uncritical use of the Fourier transform. The book offers an ideal guide for upper-level undergraduate physics students and will also benefit physics instructors. Program codes in Matlab and Python, together with interesting files for use in the problems, are provided as free supplementary material.
Download or read book Time Dependent Problems and Difference Methods written by Bertil Gustafsson and published by John Wiley & Sons. This book was released on 2013-07-18 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the First Edition ". . . fills a considerable gap in the numerical analysis literature by providing a self-contained treatment . . . this is an important work written in a clear style . . . warmly recommended to any graduate student or researcher in the field of the numerical solution of partial differential equations." —SIAM Review Time-Dependent Problems and Difference Methods, Second Edition continues to provide guidance for the analysis of difference methods for computing approximate solutions to partial differential equations for time-dependent problems. The book treats differential equations and difference methods with a parallel development, thus achieving a more useful analysis of numerical methods. The Second Edition presents hyperbolic equations in great detail as well as new coverage on second-order systems of wave equations including acoustic waves, elastic waves, and Einstein equations. Compared to first-order hyperbolic systems, initial-boundary value problems for such systems contain new properties that must be taken into account when analyzing stability. Featuring the latest material in partial differential equations with new theorems, examples, and illustrations,Time-Dependent Problems and Difference Methods, Second Edition also includes: High order methods on staggered grids Extended treatment of Summation By Parts operators and their application to second-order derivatives Simplified presentation of certain parts and proofs Time-Dependent Problems and Difference Methods, Second Edition is an ideal reference for physical scientists, engineers, numerical analysts, and mathematical modelers who use numerical experiments to test designs and to predict and investigate physical phenomena. The book is also excellent for graduate-level courses in applied mathematics and scientific computations.
Download or read book Robust Numerical Methods for Singularly Perturbed Differential Equations written by Hans-Görg Roos and published by Springer Science & Business Media. This book was released on 2008-09-17 with total page 599 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edition incorporates new developments in numerical methods for singularly perturbed differential equations, focusing on linear convection-diffusion equations and on nonlinear flow problems that appear in computational fluid dynamics.