EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Numerical Methods for Fluids  Part 3

Download or read book Numerical Methods for Fluids Part 3 written by P.G. Ciarlet and published by Elsevier. This book was released on 2003-07-25 with total page 1187 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Methods for Fluids, Part 3

Book Numerical Methods for Fluids  Part 3

Download or read book Numerical Methods for Fluids Part 3 written by P.G. Ciarlet and published by North-Holland is. This book was released on 1990 with total page 1196 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book-size article is dedicated to the numerical simulation of unsteady incompressible viscous flow modelled by the Navier-Stokes equations, or by non-Newtonian variants of them. In order to achieve this goal a methodology has been developed based on four key tools. Time discretization by operator-splitting schemes such as Peaceman-Rachford's, Douglas Rachford's, Marchuk-Yanenko's, Strang's symmetrized, and the so-called theta-scheme introduced by the author in the mid-1980s. Projection methods (in L2 or H1) for the treatment of the incompressibility condition div u = 0. Treatment of the advection by: either a centered scheme leading to linear or nonlinear advection-diffusion problems solved by least squares/conjugate gradient algorithms, or to a linear wave-like equation well suited to finite element-based solution methods. Space approximation by finite element methods such as Hood-Taylor and Bercovier-Pironneau, which are relatively easy to implement. conjugate gradient algorithms, least-squares methods for boundary-value problems which are not equivalent to problems of the calculus of variations, Uzawa-type algorithms for the solution of saddle-point problems, embedding/fictitious domain methods for the solution of elliptic and parabolic problems. In fact many computational methods discussed in this article also apply to non-CFD problems although they were mostly designed for the solution of flow problems. Among the topics covered are: the direct numerical simulation of particulate flow; computational methods for flow control; splitting methods for viso-plastic flow a la Bingham; and more. It should also be mentioned that most methods discussed in this article are illustrated by the results of numerical experiments, including the simulation of three-dimensional flow. easy to implement - as is demonstrated by the fact that several practitioners in various institutions have been able to use them ab initio for the solution of complicated flow (and other) problems.

Book Handbook of Numerical Analysis

Download or read book Handbook of Numerical Analysis written by Philippe G. Ciarlet and published by Gulf Professional Publishing. This book was released on 1990 with total page 1187 pages. Available in PDF, EPUB and Kindle. Book excerpt: Includes following subjects: Solution of equations in Rn, Finite difference methods, Finite element methods, Techniques of scientific computing, Optimization theory and systems science, Numerical methods for fluids, Numerical methods for solids, Specific applications

Book Handbook of Numerical Analysis

Download or read book Handbook of Numerical Analysis written by and published by . This book was released on 2003 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Riemann Solvers and Numerical Methods for Fluid Dynamics

Download or read book Riemann Solvers and Numerical Methods for Fluid Dynamics written by Eleuterio F. Toro and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 635 pages. Available in PDF, EPUB and Kindle. Book excerpt: High resolution upwind and centered methods are today a mature generation of computational techniques applicable to a wide range of engineering and scientific disciplines, Computational Fluid Dynamics (CFD) being the most prominent up to now. This textbook gives a comprehensive, coherent and practical presentation of this class of techniques. The book is designed to provide readers with an understanding of the basic concepts, some of the underlying theory, the ability to critically use the current research papers on the subject, and, above all, with the required information for the practical implementation of the methods. Applications include: compressible, steady, unsteady, reactive, viscous, non-viscous and free surface flows.

Book Numerical Methods for Fluid Dynamics

Download or read book Numerical Methods for Fluid Dynamics written by Dale R. Durran and published by Springer Science & Business Media. This book was released on 2010-09-14 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: This scholarly text provides an introduction to the numerical methods used to model partial differential equations, with focus on atmospheric and oceanic flows. The book covers both the essentials of building a numerical model and the more sophisticated techniques that are now available. Finite difference methods, spectral methods, finite element method, flux-corrected methods and TVC schemes are all discussed. Throughout, the author keeps to a middle ground between the theorem-proof formalism of a mathematical text and the highly empirical approach found in some engineering publications. The book establishes a concrete link between theory and practice using an extensive range of test problems to illustrate the theoretically derived properties of various methods. From the reviews: "...the books unquestionable advantage is the clarity and simplicity in presenting virtually all basic ideas and methods of numerical analysis currently actively used in geophysical fluid dynamics." Physics of Atmosphere and Ocean

Book Numerical Methods for Non Newtonian Fluids

Download or read book Numerical Methods for Non Newtonian Fluids written by and published by Elsevier. This book was released on 2010-12-20 with total page 824 pages. Available in PDF, EPUB and Kindle. Book excerpt: Non-Newtonian flows and their numerical simulations have generated an abundant literature, as well as many publications and references to which can be found in this volume’s articles. This abundance of publications can be explained by the fact that non-Newtonian fluids occur in many real life situations: the food industry, oil & gas industry, chemical, civil and mechanical engineering, the bio-Sciences, to name just a few. Mathematical and numerical analysis of non-Newtonian fluid flow models provide challenging problems to partial differential equations specialists and applied computational mathematicians alike. This volume offers investigations. Results and conclusions that will no doubt be useful to engineers and computational and applied mathematicians who are focused on various aspects of non-Newtonian Fluid Mechanics. New review of well-known computational methods for the simulation viscoelastic and viscoplastic types.; Discusses new numerical methods that have proven to be more efficient and more accurate than traditional methods.; Articles that discuss the numerical simulation of particulate flow for viscoelastic fluids.;

Book Numerical Methods for Non Newtonian Fluids

Download or read book Numerical Methods for Non Newtonian Fluids written by Philippe G. Ciarlet and published by Elsevier. This book was released on 1990 with total page 827 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Numerical Methods for Hyperbolic Problems explores the changes that have taken place in the past few decades regarding literature in the design, analysis and application of various numerical algorithms for solving hyperbolic equations. This volume provides concise summaries from experts in different types of algorithms, so that readers can find a variety of algorithms under different situations and readily understand their relative advantages and limitations.

Book Handbook of Numerical Analysis

Download or read book Handbook of Numerical Analysis written by Philippe G. Ciarlet and published by Gulf Professional Publishing. This book was released on 1990 with total page 698 pages. Available in PDF, EPUB and Kindle. Book excerpt: Includes following subjects: Solution of equations in Rn, Finite difference methods, Finite element methods, Techniques of scientific computing, Optimization theory and systems science, Numerical methods for fluids, Numerical methods for solids, Specific applications

Book Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids

Download or read book Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids written by Laura De Lorenzis and published by Springer Nature. This book was released on 2020-02-08 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book examines innovative numerical methods for computational solid and fluid mechanics that can be used to model complex problems in engineering. It also presents innovative and promising simulation methods, including the fundamentals of these methods, as well as advanced topics and complex applications. Further, the book explores how numerical simulations can significantly reduce the number of time-consuming and expensive experiments required, and can support engineering decisions by providing data that would be very difficult, if not impossible, to obtain experimentally. It also includes chapters covering topics such as particle methods addressing particle-based materials and numerical methods that are based on discrete element formulations; fictitious domain methods; phase field models; computational fluid dynamics based on modern finite volume schemes; hybridizable discontinuous Galerkin methods; and non-intrusive coupling methods for structural models.

Book Numerical Methods in Fluid Dynamics

Download or read book Numerical Methods in Fluid Dynamics written by Maurice Holt and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews of the first edition: "This book is directed to graduate students and research workers interested in the numerical solution of problems of fluid dynamics, primarily those arising in high speed flow. ...The book is well arranged, logically presented and well illustrated. It contains several FORTRAN programms with which students could experiment ... It is a practical book, with emphasis on methods and their implementation. It is an excellent text for the fruitful research area it covers, and is highly recommended". Journal of Fluid Mechanics #1 From the reviews of the second edition: "The arrangement of chapters in the book remains practically the same as that in the first editon (1977), except for the inclusion of Glimm's method ... This book is higly recommended for both graduate students and researchers." Applied Mechanics Reviews #1

Book Numerical Methods in Fluid Dynamics

Download or read book Numerical Methods in Fluid Dynamics written by Franco Brezzi and published by Springer. This book was released on 2006-11-14 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Methods in Electromagnetics

Download or read book Numerical Methods in Electromagnetics written by W.H.A. SCHILDERS and published by Elsevier. This book was released on 2005-04-04 with total page 930 pages. Available in PDF, EPUB and Kindle. Book excerpt: This special volume provides a broad overview and insight in the way numerical methods are being used to solve the wide variety of problems in the electronics industry. Furthermore its aim is to give researchers from other fields of application the opportunity to benefit from the results wich have been obtained in the electronics industry. * Complete survey of numerical methods used in the electronic industry* Each chapter is selfcontained* Presents state-of-the-art applications and methods* Internationally recognised authors

Book Mathematical Modelling and Numerical Methods in Finance

Download or read book Mathematical Modelling and Numerical Methods in Finance written by Alain Bensoussan and published by Elsevier. This book was released on 2009-06-16 with total page 743 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical finance is a prolific scientific domain in which there exists a particular characteristic of developing both advanced theories and practical techniques simultaneously. Mathematical Modelling and Numerical Methods in Finance addresses the three most important aspects in the field: mathematical models, computational methods, and applications, and provides a solid overview of major new ideas and results in the three domains. Coverage of all aspects of quantitative finance including models, computational methods and applications Provides an overview of new ideas and results Contributors are leaders of the field

Book Handbook of Numerical Analysis

Download or read book Handbook of Numerical Analysis written by Philippe G. Ciarlet and published by Gulf Professional Publishing. This book was released on 1990 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Simulation of 3 D Incompressible Unsteady Viscous Laminar Flows

Download or read book Numerical Simulation of 3 D Incompressible Unsteady Viscous Laminar Flows written by Michel Deville and published by Vieweg+Teubner Verlag. This book was released on 2013-03-09 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: The GAMM-Commi ttee for Numerical Methods in Fluid Mechanics (GAMM-Fachausschuss für Numerische Methoden in der Strömungsmechanik) has sponsored the organization of a GAMM Workshop dedicated to the numerical simulation of three dimensional incompressible unsteady viscous laminar flows to test Navier-Stokes solvers. The Workshop was held in Paris from June 12th to June 14th, 1991 at the Ecole Nationale Superieure des Arts et Metiers. Two test problems were set up. The first one is the flow in a driven-lid parallelepipedic cavity at Re = 3200 . The second problem is a flow around a prolate spheroid at incidence. These problems are challenging as fully transient solutions are expected to show up. The difficulties for meaningful calculations come from both space and temporal discretizations which have to be sufficiently accurate to resol ve detailed structures like Taylor-Görtler-like vortices and the appropriate time development. Several research teams from academia and industry tackled the tests using different formulations (veloci ty-pressure, vortici ty velocity), different numerical methods (finite differences, finite volumes, finite elements), various solution algorithms (splitting, coupled ...), various solvers (direct, iterative, semi-iterative) with preconditioners or other numerical speed-up procedures. The results show some scatter and achieve different levels of efficiency. The Workshop was attended by about 25 scientists and drove much interaction between the participants. The contributions in these proceedings are presented in alphabetical order according to the first author, first for the cavi ty problem and then for the prolate spheroid problem. No definite conclusions about benchmark solutions can be drawn.