EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Numerical Methods for Exterior Problems

Download or read book Numerical Methods for Exterior Problems written by Long'an Ying and published by World Scientific. This book was released on 2006 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive introduction to the numerical methods for the exterior problems in partial differential equations frequently encountered in science and engineering computing. The coverage includes both traditional and novel methods. A concise introduction to the well-posedness of the problems is given, establishing a solid foundation for the methods.

Book Discrete Numerical Methods in Physics and Engineering

Download or read book Discrete Numerical Methods in Physics and Engineering written by Greenspan and published by Academic Press. This book was released on 1974-05-31 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discrete Numerical Methods in Physics and Engineering

Book Fitted Numerical Methods For Singular Perturbation Problems  Error Estimates In The Maximum Norm For Linear Problems In One And Two Dimensions  Revised Edition

Download or read book Fitted Numerical Methods For Singular Perturbation Problems Error Estimates In The Maximum Norm For Linear Problems In One And Two Dimensions Revised Edition written by Miller John J H and published by World Scientific. This book was released on 2012-02-29 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the first edition of this book, the literature on fitted mesh methods for singularly perturbed problems has expanded significantly. Over the intervening years, fitted meshes have been shown to be effective for an extensive set of singularly perturbed partial differential equations. In the revised version of this book, the reader will find an introduction to the basic theory associated with fitted numerical methods for singularly perturbed differential equations. Fitted mesh methods focus on the appropriate distribution of the mesh points for singularly perturbed problems. The global errors in the numerical approximations are measured in the pointwise maximum norm. The fitted mesh algorithm is particularly simple to implement in practice, but the theory of why these numerical methods work is far from simple. This book can be used as an introductory text to the theory underpinning fitted mesh methods.

Book Numerical Methods for Eulerian and Lagrangian Conservation Laws

Download or read book Numerical Methods for Eulerian and Lagrangian Conservation Laws written by Bruno Després and published by Birkhäuser. This book was released on 2017-07-09 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the interplay between Eulerian and Lagrangian conservation laws for systems that admit physical motivation and originate from continuum mechanics. Ultimately, it highlights what is specific to and beneficial in the Lagrangian approach and its numerical methods. The two first chapters present a selection of well-known features of conservation laws and prepare readers for the subsequent chapters, which are dedicated to the analysis and discretization of Lagrangian systems. The text is at the frontier of applied mathematics and scientific computing and appeals to students and researchers interested in Lagrangian-based computational fluid dynamics. It also serves as an introduction to the recent corner-based Lagrangian finite volume techniques.

Book Numerical Methods for Problems in Infinite Domains

Download or read book Numerical Methods for Problems in Infinite Domains written by D. Givoli and published by Elsevier. This book was released on 2013-10-22 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume reviews and discusses the main numerical methods used today for solving problems in infinite domains. It also presents in detail one very effective method in this class, namely the Dirichlet-to-Neumann (DtN) finite element method. The book is intended to provide the researcher or engineer with the state-of-the-art in numerical solution methods for infinite domain problems, such as the problems encountered in acoustics and structural acoustics, fluid dynamics, meteorology, and many other fields of application. The emphasis is on the fundamentals of the various methods, and on reporting recent progress and forecasting future directions. An appendix at the end of the book provides an introduction to the essentials of the finite element method, and suggests a short list of texts on the subject which are categorized by their level of mathematics.

Book Numerical Analysis and Its Applications

Download or read book Numerical Analysis and Its Applications written by Ivan Dimov and published by Springer. This book was released on 2017-04-11 with total page 785 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes thoroughly revised selected papers of the 6th International Conference on Numerical Analysis and Its Applications, NAA 2016, held in Lozenetz, Bulgaria, in June 2016. The 90 revised papers presented were carefully reviewed and selected from 98 submissions. The conference offers a wide range of the following topics: Numerical Modeling; Numerical Stochastics; Numerical Approx-imation and Computational Geometry; Numerical Linear Algebra and Numer-ical Solution of Transcendental Equations; Numerical Methods for Differential Equations; High Performance Scientific Computing; and also special topics such as Novel methods in computational finance based on the FP7 Marie Curie Action,Project Multi-ITN STRIKE - Novel Methods in Compu-tational Finance, Grant Agreement Number 304617; Advanced numerical and applied studies of fractional differential equations.

Book Topics in Boundary Element Research

Download or read book Topics in Boundary Element Research written by Carlos A. Brebbia and published by Springer. This book was released on 2013-12-19 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: This series has been developed in response to the interest shown in boundary ele ments by scientists and engineers. Whilst Volume I was dedicated to basic principles and applications, this book is concerned with the state of the art in the solution of time-dependent problems. Since papers have recently been published on this im portant topic it is time to produce a work ofa morepermanent nature. The volume begins with a chapter on the Fundamentals of Boundary Integral Equation Methods in Elastodynamics. After reviewing the basic equations of elasto dynamics, the wave equation and dynamic reciprocal theorems are stated and the direct and indirect boundary element formulations are presented. Eigenvalue problems are discussed together with the case of the Fourier transformations. Several applications illustrate the etfectiveness ofthe technique for engineering. Chapter 2 examines some ofthe various boundary integral equation formulations available for elastodynamic problems. In particular the displacement-traction for mulation is compared with the displacement-potential case. The special character istics ofthe elastodynamics fundamental solutions are discussed in detail and a criti cal comparison with the elastostatics case is presented. While the chapter is not meant to be a complete review of the work in the field, the original presentation of the problern and the suggestions for further work make an important contribu tion to the development ofthe method.

Book Fitted Numerical Methods for Singular Perturbation Problems

Download or read book Fitted Numerical Methods for Singular Perturbation Problems written by John James Henry Miller and published by World Scientific. This book was released on 2012 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the first edition of this book, the literature on fitted mesh methods for singularly perturbed problems has expanded significantly. Over the intervening years, fitted meshes have been shown to be effective for an extensive set of singularly perturbed partial differential equations. In the revised version of this book, the reader will find an introduction to the basic theory associated with fitted numerical methods for singularly perturbed differential equations. Fitted mesh methods focus on the appropriate distribution of the mesh points for singularly perturbed problems. The global errors in the numerical approximations are measured in the pointwise maximum norm. The fitted mesh algorithm is particularly simple to implement in practice, but the theory of why these numerical methods work is far from simple. This book can be used as an introductory text to the theory underpinning fitted mesh methods.

Book Numerical Solution of Boundary Value Problems for Ordinary Differential Equations

Download or read book Numerical Solution of Boundary Value Problems for Ordinary Differential Equations written by Uri M. Ascher and published by SIAM. This book was released on 1994-12-01 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the most comprehensive, up-to-date account of the popular numerical methods for solving boundary value problems in ordinary differential equations. It aims at a thorough understanding of the field by giving an in-depth analysis of the numerical methods by using decoupling principles. Numerous exercises and real-world examples are used throughout to demonstrate the methods and the theory. Although first published in 1988, this republication remains the most comprehensive theoretical coverage of the subject matter, not available elsewhere in one volume. Many problems, arising in a wide variety of application areas, give rise to mathematical models which form boundary value problems for ordinary differential equations. These problems rarely have a closed form solution, and computer simulation is typically used to obtain their approximate solution. This book discusses methods to carry out such computer simulations in a robust, efficient, and reliable manner.

Book Numerical Methods

    Book Details:
  • Author : V. Pereyra
  • Publisher : Springer
  • Release : 2007-12-03
  • ISBN : 354040967X
  • Pages : 303 pages

Download or read book Numerical Methods written by V. Pereyra and published by Springer. This book was released on 2007-12-03 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: a

Book A Theoretical Introduction to Numerical Analysis

Download or read book A Theoretical Introduction to Numerical Analysis written by Victor S. Ryaben'kii and published by CRC Press. This book was released on 2006-11-02 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Theoretical Introduction to Numerical Analysis presents the general methodology and principles of numerical analysis, illustrating these concepts using numerical methods from real analysis, linear algebra, and differential equations. The book focuses on how to efficiently represent mathematical models for computer-based study. An access

Book Rank Deficient and Discrete Ill Posed Problems

Download or read book Rank Deficient and Discrete Ill Posed Problems written by Per Christian Hansen and published by SIAM. This book was released on 2005-01-01 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here is an overview of modern computational stabilization methods for linear inversion, with applications to a variety of problems in audio processing, medical imaging, tomography, seismology, astronomy, and other areas. Rank-deficient problems involve matrices that are either exactly or nearly rank deficient. Such problems often arise in connection with noise suppression and other problems where the goal is to suppress unwanted disturbances of the given measurements. Discrete ill-posed problems arise in connection with the numerical treatment of inverse problems, where one typically wants to compute information about some interior properties using exterior measurements. Examples of inverse problems are image restoration and tomography, where one needs to improve blurred images or reconstruct pictures from raw data. This book describes, in a common framework, new and existing numerical methods for the analysis and solution of rank-deficient and discrete ill-posed problems. The emphasis is on insight into the stabilizing properties of the algorithms and on the efficiency and reliability of the computations. The setting is that of numerical linear algebra rather than abstract functional analysis, and the theoretical development is complemented with numerical examples and figures that illustrate the features of the various algorithms.

Book Finite Element Exterior Calculus

Download or read book Finite Element Exterior Calculus written by Douglas N. Arnold and published by SIAM. This book was released on 2018-12-12 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational methods to approximate the solution of differential equations play a crucial role in science, engineering, mathematics, and technology. The key processes that govern the physical world—wave propagation, thermodynamics, fluid flow, solid deformation, electricity and magnetism, quantum mechanics, general relativity, and many more—are described by differential equations. We depend on numerical methods for the ability to simulate, explore, predict, and control systems involving these processes. The finite element exterior calculus, or FEEC, is a powerful new theoretical approach to the design and understanding of numerical methods to solve partial differential equations (PDEs). The methods derived with FEEC preserve crucial geometric and topological structures underlying the equations and are among the most successful examples of structure-preserving methods in numerical PDEs. This volume aims to help numerical analysts master the fundamentals of FEEC, including the geometrical and functional analysis preliminaries, quickly and in one place. It is also accessible to mathematicians and students of mathematics from areas other than numerical analysis who are interested in understanding how techniques from geometry and topology play a role in numerical PDEs.

Book Mathematical Analysis and Numerical Methods for Science and Technology

Download or read book Mathematical Analysis and Numerical Methods for Science and Technology written by Robert Dautray and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: The advent of high-speed computers has made it possible for the first time to calculate values from models accurately and rapidly. Researchers and engineers thus have a crucial means of using numerical results to modify and adapt arguments and experiments along the way. Every facet of technical and industrial activity has been affected by these developments. The objective of the present work is to compile the mathematical knowledge required by researchers in mechanics, physics, engineering, chemistry and other branches of application of mathematics for the theoretical and numerical resolution of physical models on computers. Since the publication in 1924 of the "Methoden der mathematischen Physik" by Courant and Hilbert, there has been no other comprehensive and up-to-date publication presenting the mathematical tools needed in applications of mathematics in directly implementable form.

Book Numerical Methods for Two point Boundary value Problems

Download or read book Numerical Methods for Two point Boundary value Problems written by Herbert Bishop Keller and published by . This book was released on 1968 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computational Science     ICCS 2009

Download or read book Computational Science ICCS 2009 written by Gabrielle Allen and published by Springer. This book was released on 2009-05-20 with total page 1030 pages. Available in PDF, EPUB and Kindle. Book excerpt: “There is something fascinating about science. One gets such wholesale returns of conjecture out of such a tri?ing investment of fact. ” Mark Twain, Life on the Mississippi The challenges in succeeding with computational science are numerous and deeply a?ect all disciplines. NSF’s 2006 Blue Ribbon Panel of Simulation-Based 1 Engineering Science (SBES) states ‘researchers and educators [agree]: com- tational and simulation engineering sciences are fundamental to the security and welfare of the United States. . . We must overcome di?culties inherent in multiscale modeling, the development of next-generation algorithms, and the design. . . of dynamic data-driven application systems. . . We must determine better ways to integrate data-intensive computing, visualization, and simulation. - portantly,wemustoverhauloureducationalsystemtofostertheinterdisciplinary study. . . The payo?sformeeting these challengesareprofound. ’The International Conference on Computational Science 2009 (ICCS 2009) explored how com- tational sciences are not only advancing the traditional hard science disciplines, but also stretching beyond, with applications in the arts, humanities, media and all aspects of research. This interdisciplinary conference drew academic and industry leaders from a variety of ?elds, including physics, astronomy, mat- matics,music,digitalmedia,biologyandengineering. Theconferencealsohosted computer and computational scientists who are designing and building the - ber infrastructure necessary for next-generation computing. Discussions focused on innovative ways to collaborate and how computational science is changing the future of research. ICCS 2009: ‘Compute. Discover. Innovate. ’ was hosted by the Center for Computation and Technology at Louisiana State University in Baton Rouge.

Book Computational Acoustics of Noise Propagation in Fluids   Finite and Boundary Element Methods

Download or read book Computational Acoustics of Noise Propagation in Fluids Finite and Boundary Element Methods written by Steffen Marburg and published by Springer Science & Business Media. This book was released on 2008-02-27 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides a survey of numerical methods for acoustics, namely the finite element method (FEM) and the boundary element method (BEM). It is the first book summarizing FEM and BEM (and optimization) for acoustics. The book shows that both methods can be effectively used for many other cases, FEM even for open domains and BEM for closed ones. Emphasis of the book is put on numerical aspects and on treatment of the exterior problem in acoustics, i.e. noise radiation.