EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Bayesian Filtering and Smoothing

Download or read book Bayesian Filtering and Smoothing written by Simo Särkkä and published by Cambridge University Press. This book was released on 2013-09-05 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unified Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.

Book Nonlinear Filtering

Download or read book Nonlinear Filtering written by Jitendra R. Raol and published by CRC Press. This book was released on 2017-07-12 with total page 581 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear Filtering covers linear and nonlinear filtering in a comprehensive manner, with appropriate theoretic and practical development. Aspects of modeling, estimation, recursive filtering, linear filtering, and nonlinear filtering are presented with appropriate and sufficient mathematics. A modeling-control-system approach is used when applicable, and detailed practical applications are presented to elucidate the analysis and filtering concepts. MATLAB routines are included, and examples from a wide range of engineering applications - including aerospace, automated manufacturing, robotics, and advanced control systems - are referenced throughout the text.

Book Bayesian Signal Processing

Download or read book Bayesian Signal Processing written by James V. Candy and published by John Wiley & Sons. This book was released on 2016-06-20 with total page 712 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents the Bayesian approach to statistical signal processing for a variety of useful model sets This book aims to give readers a unified Bayesian treatment starting from the basics (Baye’s rule) to the more advanced (Monte Carlo sampling), evolving to the next-generation model-based techniques (sequential Monte Carlo sampling). This next edition incorporates a new chapter on “Sequential Bayesian Detection,” a new section on “Ensemble Kalman Filters” as well as an expansion of Case Studies that detail Bayesian solutions for a variety of applications. These studies illustrate Bayesian approaches to real-world problems incorporating detailed particle filter designs, adaptive particle filters and sequential Bayesian detectors. In addition to these major developments a variety of sections are expanded to “fill-in-the gaps” of the first edition. Here metrics for particle filter (PF) designs with emphasis on classical “sanity testing” lead to ensemble techniques as a basic requirement for performance analysis. The expansion of information theory metrics and their application to PF designs is fully developed and applied. These expansions of the book have been updated to provide a more cohesive discussion of Bayesian processing with examples and applications enabling the comprehension of alternative approaches to solving estimation/detection problems. The second edition of Bayesian Signal Processing features: “Classical” Kalman filtering for linear, linearized, and nonlinear systems; “modern” unscented and ensemble Kalman filters: and the “next-generation” Bayesian particle filters Sequential Bayesian detection techniques incorporating model-based schemes for a variety of real-world problems Practical Bayesian processor designs including comprehensive methods of performance analysis ranging from simple sanity testing and ensemble techniques to sophisticated information metrics New case studies on adaptive particle filtering and sequential Bayesian detection are covered detailing more Bayesian approaches to applied problem solving MATLAB® notes at the end of each chapter help readers solve complex problems using readily available software commands and point out other software packages available Problem sets included to test readers’ knowledge and help them put their new skills into practice Bayesian Signal Processing, Second Edition is written for all students, scientists, and engineers who investigate and apply signal processing to their everyday problems.

Book Fundamentals of Stochastic Filtering

Download or read book Fundamentals of Stochastic Filtering written by Alan Bain and published by Springer Science & Business Media. This book was released on 2008-10-08 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a rigorous mathematical treatment of the non-linear stochastic filtering problem using modern methods. Particular emphasis is placed on the theoretical analysis of numerical methods for the solution of the filtering problem via particle methods. The book should provide sufficient background to enable study of the recent literature. While no prior knowledge of stochastic filtering is required, readers are assumed to be familiar with measure theory, probability theory and the basics of stochastic processes. Most of the technical results that are required are stated and proved in the appendices. Exercises and solutions are included.

Book Bayesian Filtering and Smoothing

Download or read book Bayesian Filtering and Smoothing written by Simo Särkkä and published by Cambridge University Press. This book was released on 2023-05-31 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its second edition, this accessible text presents a unified Bayesian treatment of state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models. The book focuses on discrete-time state space models and carefully introduces fundamental aspects related to optimal filtering and smoothing. In particular, it covers a range of efficient non-linear Gaussian filtering and smoothing algorithms, as well as Monte Carlo-based algorithms. This updated edition features new chapters on constructing state space models of practical systems, the discretization of continuous-time state space models, Gaussian filtering by enabling approximations, posterior linearization filtering, and the corresponding smoothers. Coverage of key topics is expanded, including extended Kalman filtering and smoothing, and parameter estimation. The book's practical, algorithmic approach assumes only modest mathematical prerequisites, suitable for graduate and advanced undergraduate students. Many examples are included, with Matlab and Python code available online, enabling readers to implement algorithms in their own projects.

Book Integrated Tracking  Classification  and Sensor Management

Download or read book Integrated Tracking Classification and Sensor Management written by Mahendra Mallick and published by John Wiley & Sons. This book was released on 2012-11-05 with total page 569 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unique guide to the state of the art of tracking, classification, and sensor management This book addresses the tremendous progress made over the last few decades in algorithm development and mathematical analysis for filtering, multi-target multi-sensor tracking, sensor management and control, and target classification. It provides for the first time an integrated treatment of these advanced topics, complete with careful mathematical formulation, clear description of the theory, and real-world applications. Written by experts in the field, Integrated Tracking, Classification, and Sensor Management provides readers with easy access to key Bayesian modeling and filtering methods, multi-target tracking approaches, target classification procedures, and large scale sensor management problem-solving techniques. Features include: An accessible coverage of random finite set based multi-target filtering algorithms such as the Probability Hypothesis Density filters and multi-Bernoulli filters with focus on problem solving A succinct overview of the track-oriented MHT that comprehensively collates all significant developments in filtering and tracking A state-of-the-art algorithm for hybrid Bayesian network (BN) inference that is efficient and scalable for complex classification models New structural results in stochastic sensor scheduling and algorithms for dynamic sensor scheduling and management Coverage of the posterior Cramer-Rao lower bound (PCRLB) for target tracking and sensor management Insight into cutting-edge military and civilian applications, including intelligence, surveillance, and reconnaissance (ISR) With its emphasis on the latest research results, Integrated Tracking, Classification, and Sensor Management is an invaluable guide for researchers and practitioners in statistical signal processing, radar systems, operations research, and control theory.

Book Continuous Time Modeling in the Behavioral and Related Sciences

Download or read book Continuous Time Modeling in the Behavioral and Related Sciences written by Kees van Montfort and published by Springer. This book was released on 2018-10-11 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique book provides an overview of continuous time modeling in the behavioral and related sciences. It argues that the use of discrete time models for processes that are in fact evolving in continuous time produces problems that make their application in practice highly questionable. One main issue is the dependence of discrete time parameter estimates on the chosen time interval, which leads to incomparability of results across different observation intervals. Continuous time modeling by means of differential equations offers a powerful approach for studying dynamic phenomena, yet the use of this approach in the behavioral and related sciences such as psychology, sociology, economics and medicine, is still rare. This is unfortunate, because in these fields often only a few discrete time (sampled) observations are available for analysis (e.g., daily, weekly, yearly, etc.). However, as emphasized by Rex Bergstrom, the pioneer of continuous-time modeling in econometrics, neither human beings nor the economy cease to exist in between observations. In 16 chapters, the book addresses a vast range of topics in continuous time modeling, from approaches that closely mimic traditional linear discrete time models to highly nonlinear state space modeling techniques. Each chapter describes the type of research questions and data that the approach is most suitable for, provides detailed statistical explanations of the models, and includes one or more applied examples. To allow readers to implement the various techniques directly, accompanying computer code is made available online. The book is intended as a reference work for students and scientists working with longitudinal data who have a Master's- or early PhD-level knowledge of statistics.

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1995 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Applied AI and Multimedia Technologies for Smart Manufacturing and CPS Applications

Download or read book Applied AI and Multimedia Technologies for Smart Manufacturing and CPS Applications written by Oyekanlu, Emmanuel and published by IGI Global. This book was released on 2023-04-03 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past decade, artificial intelligence (AI), data analytics, and multimedia technology methods for integrating cyber-physical systems (CPS), smart manufacturing, and Industry 4.0 applications in the manufacturing industries have been steadily growing in availability. However, for industrial leaders, finding applicable, cost effective, and readily implementable multimedia, AI, and data analytics methods for industrial applications remains a daunting, laborious, and very expensive endeavor since the ecosystem of these technologies keeps diverging. Applied AI and Multimedia Technologies for Smart Manufacturing and CPS Applications provides a review of the state of the art regarding the integration of AI and multimedia technologies for smart manufacturing applications. It conducts a cost-benefit analysis regarding the benefits of the integration of specific AI and multimedia technologies in specific industrial manufacturing applications. Covering topics such as cognitive lead measurement, nonlinear filtering methods, and global product development, this premier reference source is a dynamic resource for business executives and managers, entrepreneurs, IT professionals, manufacturers, students and faculty of higher education, researchers, and academicians.

Book Kybernetika

Download or read book Kybernetika written by and published by . This book was released on 2008 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Bayesian Time Series Models

Download or read book Bayesian Time Series Models written by David Barber and published by Cambridge University Press. This book was released on 2011-08-11 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first unified treatment of time series modelling techniques spanning machine learning, statistics, engineering and computer science.

Book VI Latin American Congress on Biomedical Engineering CLAIB 2014  Paran    Argentina 29  30   31 October 2014

Download or read book VI Latin American Congress on Biomedical Engineering CLAIB 2014 Paran Argentina 29 30 31 October 2014 written by Ariel Braidot and published by Springer. This book was released on 2015-03-13 with total page 1050 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents the proceedings of the CLAIB 2014, held in Paraná, Entre Ríos, Argentina 29, 30 & 31 October 2014. The proceedings, presented by the Regional Council of Biomedical Engineering for Latin America (CORAL) offer research findings, experiences and activities between institutions and universities to develop Bioengineering, Biomedical Engineering and related sciences. The conferences of the American Congress of Biomedical Engineering are sponsored by the International Federation for Medical and Biological Engineering (IFMBE), Society for Engineering in Biology and Medicine (EMBS) and the Pan American Health Organization (PAHO), among other organizations and international agencies and bringing together scientists, academics and biomedical engineers in Latin America and other continents in an environment conducive to exchange and professional growth. The Topics include: - Bioinformatics and Computational Biology - Bioinstrumentation; Sensors, Micro and Nano Technologies - Biomaterials, Tissue Engineering and Artificial Organs - Biomechanics, Robotics and Motion Analysis - Biomedical Images and Image Processing - Biomedical Signal Processing - Clinical Engineering and Electromedicine - Computer and Medical Informatics - Health and home care, telemedicine - Modeling and Simulation - Radiobiology, Radiation and Medical Physics - Rehabilitation Engineering and Prosthetics - Technology, Education and Innovation

Book American Doctoral Dissertations

Download or read book American Doctoral Dissertations written by and published by . This book was released on 1992 with total page 796 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Markov Chains

    Book Details:
  • Author : Wai-Ki Ching
  • Publisher : Springer Science & Business Media
  • Release : 2013-03-27
  • ISBN : 1461463122
  • Pages : 259 pages

Download or read book Markov Chains written by Wai-Ki Ching and published by Springer Science & Business Media. This book was released on 2013-03-27 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edition of Markov Chains: Models, Algorithms and Applications has been completely reformatted as a text, complete with end-of-chapter exercises, a new focus on management science, new applications of the models, and new examples with applications in financial risk management and modeling of financial data. This book consists of eight chapters. Chapter 1 gives a brief introduction to the classical theory on both discrete and continuous time Markov chains. The relationship between Markov chains of finite states and matrix theory will also be highlighted. Some classical iterative methods for solving linear systems will be introduced for finding the stationary distribution of a Markov chain. The chapter then covers the basic theories and algorithms for hidden Markov models (HMMs) and Markov decision processes (MDPs). Chapter 2 discusses the applications of continuous time Markov chains to model queueing systems and discrete time Markov chain for computing the PageRank, the ranking of websites on the Internet. Chapter 3 studies Markovian models for manufacturing and re-manufacturing systems and presents closed form solutions and fast numerical algorithms for solving the captured systems. In Chapter 4, the authors present a simple hidden Markov model (HMM) with fast numerical algorithms for estimating the model parameters. An application of the HMM for customer classification is also presented. Chapter 5 discusses Markov decision processes for customer lifetime values. Customer Lifetime Values (CLV) is an important concept and quantity in marketing management. The authors present an approach based on Markov decision processes for the calculation of CLV using real data. Chapter 6 considers higher-order Markov chain models, particularly a class of parsimonious higher-order Markov chain models. Efficient estimation methods for model parameters based on linear programming are presented. Contemporary research results on applications to demand predictions, inventory control and financial risk measurement are also presented. In Chapter 7, a class of parsimonious multivariate Markov models is introduced. Again, efficient estimation methods based on linear programming are presented. Applications to demand predictions, inventory control policy and modeling credit ratings data are discussed. Finally, Chapter 8 re-visits hidden Markov models, and the authors present a new class of hidden Markov models with efficient algorithms for estimating the model parameters. Applications to modeling interest rates, credit ratings and default data are discussed. This book is aimed at senior undergraduate students, postgraduate students, professionals, practitioners, and researchers in applied mathematics, computational science, operational research, management science and finance, who are interested in the formulation and computation of queueing networks, Markov chain models and related topics. Readers are expected to have some basic knowledge of probability theory, Markov processes and matrix theory.

Book Bayesian Inference of State Space Models

Download or read book Bayesian Inference of State Space Models written by Kostas Triantafyllopoulos and published by Springer Nature. This book was released on 2021-11-12 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Inference of State Space Models: Kalman Filtering and Beyond offers a comprehensive introduction to Bayesian estimation and forecasting for state space models. The celebrated Kalman filter, with its numerous extensions, takes centre stage in the book. Univariate and multivariate models, linear Gaussian, non-linear and non-Gaussian models are discussed with applications to signal processing, environmetrics, economics and systems engineering. Over the past years there has been a growing literature on Bayesian inference of state space models, focusing on multivariate models as well as on non-linear and non-Gaussian models. The availability of time series data in many fields of science and industry on the one hand, and the development of low-cost computational capabilities on the other, have resulted in a wealth of statistical methods aimed at parameter estimation and forecasting. This book brings together many of these methods, presenting an accessible and comprehensive introduction to state space models. A number of data sets from different disciplines are used to illustrate the methods and show how they are applied in practice. The R package BTSA, created for the book, includes many of the algorithms and examples presented. The book is essentially self-contained and includes a chapter summarising the prerequisites in undergraduate linear algebra, probability and statistics. An up-to-date and complete account of state space methods, illustrated by real-life data sets and R code, this textbook will appeal to a wide range of students and scientists, notably in the disciplines of statistics, systems engineering, signal processing, data science, finance and econometrics. With numerous exercises in each chapter, and prerequisite knowledge conveniently recalled, it is suitable for upper undergraduate and graduate courses.

Book Grid based Nonlinear Estimation and Its Applications

Download or read book Grid based Nonlinear Estimation and Its Applications written by Bin Jia and published by CRC Press. This book was released on 2019-04-25 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: Grid-based Nonlinear Estimation and its Applications presents new Bayesian nonlinear estimation techniques developed in the last two decades. Grid-based estimation techniques are based on efficient and precise numerical integration rules to improve performance of the traditional Kalman filtering based estimation for nonlinear and uncertainty dynamic systems. The unscented Kalman filter, Gauss-Hermite quadrature filter, cubature Kalman filter, sparse-grid quadrature filter, and many other numerical grid-based filtering techniques have been introduced and compared in this book. Theoretical analysis and numerical simulations are provided to show the relationships and distinct features of different estimation techniques. To assist the exposition of the filtering concept, preliminary mathematical review is provided. In addition, rather than merely considering the single sensor estimation, multiple sensor estimation, including the centralized and decentralized estimation, is included. Different decentralized estimation strategies, including consensus, diffusion, and covariance intersection, are investigated. Diverse engineering applications, such as uncertainty propagation, target tracking, guidance, navigation, and control, are presented to illustrate the performance of different grid-based estimation techniques.