EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Numerical Investigation of a Gasoline Like Fuel in a Heavy Duty Compression Ignition Engine Using Global Sensitivity Analysis

Download or read book Numerical Investigation of a Gasoline Like Fuel in a Heavy Duty Compression Ignition Engine Using Global Sensitivity Analysis written by and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Fuels in the gasoline auto-ignition range (Research Octane Number (RON)> 60) have been demonstrated to be effective alternatives to diesel fuel in compression ignition engines. Such fuels allow more time for mixing with oxygen before combustion starts, owing to longer ignition delay. Moreover, by controlling fuel injection timing, it can be ensured that the in-cylinder mixture is "premixed enough" before combustion occurs to prevent soot formation while remaining "sufficiently inhomogeneous" in order to avoid excessive heat release rates. Gasoline compression ignition (GCI) has the potential to offer diesel-like efficiency at a lower cost and can be achieved with fuels such as low-octane straight run gasoline which require significantly less processing in the refinery compared to today's fuels. To aid the design and optimization of a compression ignition (CI) combustion system using such fuels, a global sensitivity analysis (GSA) was conducted to understand the relative influence of various design parameters on efficiency, emissions and heat release rate. The design parameters included injection strategies, exhaust gas recirculation (EGR) fraction, temperature and pressure at intake valve closure and injector configuration. These were varied simultaneously to achieve various targets of ignition timing, combustion phasing, overall burn duration, emissions, fuel consumption, peak cylinder pressure and maximum pressure rise rate. The baseline case was a three-dimensional closed-cycle computational fluid dynamics (CFD) simulation with a sector mesh at medium load conditions. Eleven design parameters were considered and ranges of variation were prescribed to each of these. These input variables were perturbed in their respective ranges using the Monte Carlo (MC) method to generate a set of 256 CFD simulations and the targets were calculated from the simulation results. GSA was then applied as a screening tool to identify the input parameters having the most significant impact on each target. The results were further assessed by investigating the impact of individual parameter variations on the targets. Overall, it was demonstrated that GSA can be an effective tool in understanding parameters sensitive to a low temperature combustion concept with novel fuels.

Book Gasoline Compression Ignition Technology

Download or read book Gasoline Compression Ignition Technology written by Gautam Kalghatgi and published by Springer Nature. This book was released on 2022-01-17 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on gasoline compression ignition (GCI) which offers the prospect of engines with high efficiency and low exhaust emissions at a lower cost. A GCI engine is a compression ignition (CI) engine which is run on gasoline-like fuels (even on low-octane gasoline), making it significantly easier to control particulates and NOx but with high efficiency. The state of the art development to make GCI combustion feasible on practical vehicles is highlighted, e.g., on overcoming problems on cold start, high-pressure rise rates at high loads, transients, and HC and CO emissions. This book will be a useful guide to those in academia and industry.

Book Alternative Fuels and Advanced Combustion Techniques as Sustainable Solutions for Internal Combustion Engines

Download or read book Alternative Fuels and Advanced Combustion Techniques as Sustainable Solutions for Internal Combustion Engines written by Akhilendra Pratap Singh and published by Springer Nature. This book was released on 2021-05-15 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph covers different aspects related to utilization of alternative fuels in internal combustion (IC) engines with a focus on biodiesel, dimethyl ether, alcohols, biogas, etc. The focal point of this book is to present engine combustion, performance and emission characteristics of IC engines fueled by these alternative fuels. A section of this book also covers the potential strategies of utilization of these alternative fuels in an energy efficient manner to reduce the harmful pollutants emitted from IC engines. It presents the comparative analysis of different alternative fuels in a variety of engines to show the appropriate alternative fuel for specific types of engines. This book will prove useful for both researchers as well as energy experts and policy makers.

Book SI Combustion

Download or read book SI Combustion written by and published by . This book was released on 2003 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advances in Internal Combustion Engine Research

Download or read book Advances in Internal Combustion Engine Research written by Dhananjay Kumar Srivastava and published by Springer. This book was released on 2017-11-29 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses all aspects of advanced engine technologies, and describes the role of alternative fuels and solution-based modeling studies in meeting the increasingly higher standards of the automotive industry. By promoting research into more efficient and environment-friendly combustion technologies, it helps enable researchers to develop higher-power engines with lower fuel consumption, emissions, and noise levels. Over the course of 12 chapters, it covers research in areas such as homogeneous charge compression ignition (HCCI) combustion and control strategies, the use of alternative fuels and additives in combination with new combustion technology and novel approaches to recover the pumping loss in the spark ignition engine. The book will serve as a valuable resource for academic researchers and professional automotive engineers alike.

Book Technology and Science for the Ships of the Future

Download or read book Technology and Science for the Ships of the Future written by E. Rizzuto and published by IOS Press. This book was released on 2022-09-29 with total page 788 pages. Available in PDF, EPUB and Kindle. Book excerpt: The oceans are a key resource for transportation, energy and material extraction, and food production, representing one of the most important environments on the planet. Technological developments enabling us to exploit marine resources in a sustainable way are therefore of the greatest importance. This book presents the proceedings of the NAV 2022 conference, held in Genoa and La Spezia, Italy, from 15 to 17 June 2022. The conference is held every 3 years, attracting specialists in marine technology from all over the world. NAV 2022 was the 20th edition of the conference, and covered a full spectrum of maritime technology themes, all related to the exploitation of sea resources. The book contains 87 scientific papers, covering subjects ranging from comfort on board; to conceptual and practical ship design; deep sea mining and marine robotics; protection of the environment; renewable marine energy; design and engineering of offshore vessels; digitalization and cyber security; unmanned vehicles; yacht and pleasure craft design, and inland-waterway vessels. Providing a comprehensive coverage of the latest scientific and technical maritime issues, the book will be of interest to all those involved in this vital global industry.

Book Experimental and Numerical Investigation of Performance and Emissions in Compression Ignition Engines with Alternative Fuels

Download or read book Experimental and Numerical Investigation of Performance and Emissions in Compression Ignition Engines with Alternative Fuels written by Shahid Imran and published by . This book was released on 2013 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Introduction to Hydrogen Technology

Download or read book Introduction to Hydrogen Technology written by K. S. V. Santhanam and published by John Wiley & Sons. This book was released on 2017-09-19 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces the field of hydrogen technology and explains the basic chemistry underlying promising and innovative new technologies This new and completely updated edition of Introduction to Hydrogen Technology explains, at an introductory level, the scientific and technical aspects of hydrogen technology. It incorporates information on the latest developments and the current research in the field, including: new techniques for isolating and storing hydrogen, usage as a fuel for automobiles, residential power systems, mobile power systems, and space applications. Introduction to Hydrogen Technology, Second Edition features classroom-tested exercises and sample problems. It details new economical methods for isolating the pure hydrogen molecule. These less expensive methods help make hydrogen fuel a very viable alternative to petroleum-based energy. The book also adds a new chapter on hydrogen production and batteries. It also provides in-depth coverage of the many technical hurdles in hydrogen storage. The developments in fuel cells since the last edition has been updated. Offers new chapters on hydrogen production, storage, and batteries Features new sections on advanced hydrogen systems, new membranes, greenhouse gas sensors and updated technologies involving solar and wind energies Includes problems at the end of the Chapters, as well as solutions for adopters This book is an introduction to hydrogen technology for students who have taken at least one course in general chemistry and calculus; it will also be a resource book for scientists and researchers working in hydrogen-based technologies, as well as anyone interested in sustainable energy.

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on with total page 1026 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.

Book Isolation of Fuel Property and Boundary Condition Effects on Low Load Gasoline Compression Ignition  GCI

Download or read book Isolation of Fuel Property and Boundary Condition Effects on Low Load Gasoline Compression Ignition GCI written by John Andrew Roberts and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gasoline compression ignition (GCI) combustion is a promising solution to address increasingly stringent efficiency and emissions regulations imposed on the internal combustion engine. However, the high resistance to auto-ignition of modern market gasoline makes low load compression ignition operation difficult. The most comprehensive work focused on low load GCI operation has been performed on multi-cylinder research engines where it is difficult to decouple effects of the combustion event from air-handling and system level parameters (e.g., intake pressurization and exhaust gas recirculation (EGR)). Further, most research has focused on technology applications (e.g., use of variable valve actuation or supercharging) rather than fundamental effects, making identification of influential factors difficult. Accordingly, there is a need for detailed investigations focused on isolating the critical parameters that can be used to enable low load GCI operation. A full factorial parametric study was completed to isolate the effects of intake temperature, EGR rate, and fuel reactivity on low load performance. A minimum intake pressure metric was used to compare these parameters. This allowed combustion phasing and load to be held constant while isolating the experiment from fuel injection effects. The effort showed that increasing intake temperature yields a linear reduction in the minimum intake pressure required for stable operation. Adding a small amount of diesel fuel to gasoline improved combustion stability with minimal need for energy addition through intake pressurization. The minimum intake pressure requirement also showed very good correlation with the measured research octane number of the fuel. However, increasing the fuel reactivity with diesel fuel, caused NOx emissions to increase. Response model analysis was used to determine the intake conditions required to maintain NOx levels that may not require lean NOx after treatment. The combination of diesel fuel blending and EGR allowed NOx levels to be reduced to near zero values with the minimum intake pressurization required. A detailed investigation into the effects of EGR showed that, for a given fuel, there is a maximum EGR rate that allows for stable operation, which effectively constrains the minimum NOx prior to aftertreatment. Accordingly, a method that enables the variation of the fuel reactivity on demand is an ideal solution to address low load stability issues. Metal engine experiments conducted on a single cylinder medium-duty research engine allowed for the investigation of this strategy. The fuels used for this study were 87 octane gasoline (primary fuel stream) and diesel fuel (reactivity enhancer). Initial tests demonstrated load extension down to idle conditions with only 20% diesel by mass, which reduced to 0% at loads above 3 bar indicated mean effective pressure (IMEPg). Engine performance over a mode weighted drive cycle was completed based on work by the Ad-Hoc fuels committee [1] to demonstrate the performance of various levels of fuel blending for five primary modes of operation encompassing low load to high load. Lastly, several simulated transient drive cycle were analyzed to investigate the consumption rate of the reactivity enhancer. A response model was fit to the experimental data and exercised over the load based drive cycle. Results showed that the diesel consumption could be reduced to additive levels over a 10k mile oil change interval, lower than typical diesel exhaust fluid (DEF) consumption levels, which presents a pathway to a full-time GCI engine. Experimental efforts used a minimum intake pressure metric to evaluate the auto-ignition quality of seven fuels, including two pump fuels and five FACE gasolines in a GCI engine. The results showed that research octane number (RON) trends well with the intake pressure required to achieve a desired ignition delay at low-temperature conditions, which are representative of a boosted GCI engine. At higher temperature intake conditions poor correlation is observed between RON and intake pressure requirement. Effects of octane sensitivity were dominated by the general reactivity of fuel as characterized by RON. The Octane Index and K-factors were regressed for each operating condition, and good correlation was seen between the Octane Index and the intake pressure requirement. Main effects analysis of the impact of general properties of the fuel (RON, motor octane number (MON), and sensitivity (S)) on the intake pressure requirement showed that RON was the only statistically significant parameter. Analysis of the main effects of fuel composition on intake pressure requirement showed some trends, but none were statistically significant. This indicates that the auto-ignition quality of the fuel is not characterized by variations in any single species. Analysis of the stable start-of-injection (SOI) timing injection window showed that both RON and sensitivity describe stability at low temperatures. In general, a fuel with a higher RON will have a smaller stable SOI window than a lower RON fuel. Additionally, fuels with the same RON and different sensitivities will behave differently. Analysis showed that, for a given RON, a low sensitivity fuel would tend to have a wider operating window than a high sensitivity fuel. Analysis of the heat release for the experimental cases showed that this is due to the presence of low-temperature chemistry. Fuels that suppress low-temperature chemistry did not show low-temperature heat release (LTHR) and had a narrower stability window. At high temperatures, LTHR was suppressed for all fuels, as the temperature in the jet exceeded the ceiling temperature for low-temperature oxidation.

Book An Investigation Into Gasoline Operation in a Heavy Duty Compression Ignition Engine

Download or read book An Investigation Into Gasoline Operation in a Heavy Duty Compression Ignition Engine written by Jordan Anthony Paz and published by . This book was released on 2017 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Low temperature Combustion and Autoignition

Download or read book Low temperature Combustion and Autoignition written by M.J. Pilling and published by Elsevier. This book was released on 1997-11-27 with total page 823 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combustion has played a central role in the development of our civilization which it maintains today as its predominant source of energy. The aim of this book is to provide an understanding of both fundamental and applied aspects of low-temperature combustion chemistry and autoignition. The topic is rooted in classical observational science and has grown, through an increasing understanding of the linkage of the phenomenology to coupled chemical reactions, to quite profound advances in the chemical kinetics of both complex and elementary reactions. The driving force has been both the intrinsic interest of an old and intriguing phenomenon and the centrality of its applications to our economic prosperity. The volume provides a coherent view of the subject while, at the same time, each chapter is self-contained.

Book Annual Index abstracts of SAE Technical Papers 2004

Download or read book Annual Index abstracts of SAE Technical Papers 2004 written by and published by . This book was released on 2005 with total page 962 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Technical Literature Abstracts

Download or read book Technical Literature Abstracts written by Society of Automotive Engineers and published by . This book was released on 1998 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Engines and Fuels for Future Transport

Download or read book Engines and Fuels for Future Transport written by Gautam Kalghatgi and published by Springer Nature. This book was released on 2021-12-13 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on clean transport and mobility essential to the modern world. It discusses internal combustion engines (ICEs) and alternatives like battery electric vehicles (BEVs) which are growing fast. Alternatives to ICEs start from a very low base and face formidable environmental, material availability, and economic challenges to unlimited and rapid growth. Hence ICEs will continue to be the main power source for transport for decades to come and have to be continuously improved to improve transport sustainability. The book highlights the need to assess proposed changes in the existing transport system on a life cycle basis. The volume includes chapters discussing the challenges faced by ICEs as well as chapters on novel fuels and fuel/ engine interactions which help in this quest to improve the efficiency of ICE and reduce exhaust pollutants. This book will be of interest to those in academia and industry alike.

Book Cost  Effectiveness  and Deployment of Fuel Economy Technologies for Light Duty Vehicles

Download or read book Cost Effectiveness and Deployment of Fuel Economy Technologies for Light Duty Vehicles written by National Research Council and published by National Academies Press. This book was released on 2015-09-28 with total page 812 pages. Available in PDF, EPUB and Kindle. Book excerpt: The light-duty vehicle fleet is expected to undergo substantial technological changes over the next several decades. New powertrain designs, alternative fuels, advanced materials and significant changes to the vehicle body are being driven by increasingly stringent fuel economy and greenhouse gas emission standards. By the end of the next decade, cars and light-duty trucks will be more fuel efficient, weigh less, emit less air pollutants, have more safety features, and will be more expensive to purchase relative to current vehicles. Though the gasoline-powered spark ignition engine will continue to be the dominant powertrain configuration even through 2030, such vehicles will be equipped with advanced technologies, materials, electronics and controls, and aerodynamics. And by 2030, the deployment of alternative methods to propel and fuel vehicles and alternative modes of transportation, including autonomous vehicles, will be well underway. What are these new technologies - how will they work, and will some technologies be more effective than others? Written to inform The United States Department of Transportation's National Highway Traffic Safety Administration (NHTSA) and Environmental Protection Agency (EPA) Corporate Average Fuel Economy (CAFE) and greenhouse gas (GHG) emission standards, this new report from the National Research Council is a technical evaluation of costs, benefits, and implementation issues of fuel reduction technologies for next-generation light-duty vehicles. Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles estimates the cost, potential efficiency improvements, and barriers to commercial deployment of technologies that might be employed from 2020 to 2030. This report describes these promising technologies and makes recommendations for their inclusion on the list of technologies applicable for the 2017-2025 CAFE standards.

Book Diesel Engines   Current Challenges and Future Perspectives

Download or read book Diesel Engines Current Challenges and Future Perspectives written by Hasan Koten and published by BoD – Books on Demand. This book was released on 2024-05-22 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the current technology and future status of diesel engines. While gasoline engines are preferred for speed and jet engines, diesel engines are widely used in vehicles and machinery that require torque, such as ships, trains, tanks, unmanned ariel vehicles (UAVs), and heavy-duty vehicles. Some recent research on global climate change has focused on obtaining zero carbon, zero emissions, and decarbonization via clean combustion technologies. For this reason, restrictive emission regulations have forced engine manufacturers and research centers to turn to different technologies to achieve clean combustion in diesel engines. This book focuses on different combustion technologies, from artificial intelligence applications in diesel engines to alternative fuels. It discusses the roles of artificial intelligence in the design of diesel engines, the use of different fuels in diesel engines, and the effects of these on the performance and emission values of diesel engines. Solving the challenge of hydrogen storage in hydrogen-fed diesel engines will open a new era for internal combustion engines. In particular, the use of hydrogen fuel produced by the reaction of chemical ingredients with water in diesel engine cycles will have a significant impact on the industry. This book, which brings together the latest studies on clean combustion technologies, is an interesting resource for both industry and research centers.