EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Electromagnetic Modeling and Simulation

Download or read book Electromagnetic Modeling and Simulation written by Levent Sevgi and published by Wiley-IEEE Press. This book was released on 2014-04-11 with total page 696 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical and Analytical Methods in Electromagnetics

Download or read book Numerical and Analytical Methods in Electromagnetics written by Hristos T. Anastassiu and published by MDPI. This book was released on 2021-03-19 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: Like all branches of physics and engineering, electromagnetics relies on mathematical methods for modeling, simulation, and design procedures in all of its aspects (radiation, propagation, scattering, imaging, etc.). Originally, rigorous analytical techniques were the only machinery available to produce any useful results. In the 1960s and 1970s, emphasis was placed on asymptotic techniques, which produced approximations of the fields for very high frequencies when closed-form solutions were not feasible. Later, when computers demonstrated explosive progress, numerical techniques were utilized to develop approximate results of controllable accuracy for arbitrary geometries. In this Special Issue, the most recent advances in the aforementioned approaches are presented to illustrate the state-of-the-art mathematical techniques in electromagnetics.

Book Electromagnetic Modeling and Simulation

Download or read book Electromagnetic Modeling and Simulation written by Levent Sevgi and published by John Wiley & Sons. This book was released on 2014-03-13 with total page 665 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique book presents simple, easy-to-use, but effective short codes as well as virtual tools that can be used by electrical, electronic, communication, and computer engineers in a broad range of electrical engineering problems Electromagnetic modeling is essential to the design and modeling of antenna, radar, satellite, medical imaging, and other applications. In this book, author Levent Sevgi explains techniques for solving real-time complex physical problems using MATLAB-based short scripts and comprehensive virtual tools. Unique in coverage and tutorial approach, Electromagnetic Modeling and Simulation covers fundamental analytical and numerical models that are widely used in teaching, research, and engineering designs—including mode and ray summation approaches with the canonical 2D nonpenetrable parallel plate waveguide as well as FDTD, MoM, and SSPE scripts. The book also establishes an intelligent balance among the essentials of EM MODSIM: The Problem (the physics), The Theory and Models (mathematical background and analytical solutions), and The Simulations (code developing plus validation, verification, and calibration). Classroom tested in graduate-level and short courses, Electromagnetic Modeling and Simulation: Clarifies concepts through numerous worked problems and quizzes provided throughout the book Features valuable MATLAB-based, user-friendly, effective engineering and research virtual design tools Includes sample scenarios and video clips recorded during characteristic simulations that visually impact learning—available on wiley.com Provides readers with their first steps in EM MODSIM as well as tools for medium and high-level code developers and users Electromagnetic Modeling and Simulation thoroughly covers the physics, mathematical background, analytical solutions, and code development of electromagnetic modeling, making it an ideal resource for electrical engineers and researchers.

Book Numerical Analysis for Electromagnetic Integral Equations

Download or read book Numerical Analysis for Electromagnetic Integral Equations written by Karl F. Warnick and published by Artech House. This book was released on 2008 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction -- Surface integral equation formulations and the method of moments -- Error analysis of the EFIE / with W.C. Chew -- Error analysis of the MFIE and CFIE / with C.P. Davis -- Geometrical singularities and the flat strip -- Resonant structures -- Error analysis for 3D problems -- Higher-order basis functions / with A.F. Peterson -- Operator spectra and iterative solution methods.

Book Complex Electromagnetic Problems and Numerical Simulation Approaches

Download or read book Complex Electromagnetic Problems and Numerical Simulation Approaches written by Levent Sevgi and published by John Wiley & Sons. This book was released on 2003-06-10 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today, engineering problems are very complex, requiring powerful computer simulations to power them. For engineers, observable-based parameterization as well as numerically computable formsâ??with rapid convergent properties if in a seriesâ??are essential. Complex Electromagnetic Problems and Numerical Simulation Approaches, along with its companion FTP site, will show you how to take on complex electromagnetic problems and solve them in an accurate and efficient manner. Organized into two distinct parts, this comprehensive resource first introduces you to the concepts, approaches, and numerical simulation techniques that will be used throughout the book and then, in Part II, offers step-by-step guidance as to their practical, real-world applications. Self-contained chapters will enable you to find specific solutions to numerous problems. Filled with in-depth insight and expert advice, Complex Electromagnetic Problems and Numerical Simulation Approaches: Describes ground wave propagation Examines antenna systems Deals with radar cross section (RCS) modeling Explores microstrip network design with FDTD and TLM techniques Discusses electromagnetic compatibility (EMC) and bio-electromagnetics (BEM) modeling Presents radar simulation Whether you're a professional electromagnetic engineer requiring a consolidated overview of the subject or an academic/student who wishes to use powerful simulators as a learning tool, Complex Electromagnetic Problems and Numerical Simulation Approaches - with its focus on model development, model justification, and range of validity - is the right book for you.

Book Essential Numerical Methods in Electromagnetics

Download or read book Essential Numerical Methods in Electromagnetics written by P.G. Ciarlet and published by Elsevier Science. This book was released on 2010-11-18 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Essential Numerical Methods for Electromagnetics presents key contributions selected from the volume in the Handbook of Numerical Analysis: Numerical Methods for Electromagnetics Vol. 13 (2005). This reference is an accessible resource on the basics of modeling. It is designed to assist professionals in the development of electromagnetic designs for electronic components and devices. It provides essential numerical methods and applications necessary for the development of technologies and simulation modeling. Numerical methods are a key ingredient in a simulation environment where researchers create virtually simulated experiments versus physical experiments. This book serves as a useful guide for scientists, engineers, and researchers providing a quick reference of commonly used numerical methods to help solve a variety of problems in the electronic industry.

Book Electromagnetic Diffraction Modeling and Simulation with MATLAB

Download or read book Electromagnetic Diffraction Modeling and Simulation with MATLAB written by Gökhan Apaydin and published by Artech House. This book was released on 2021-02-28 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: This exciting new resource presents a comprehensive introduction to the fundamentals of diffraction of two-dimensional canonical structures, including wedge, strip, and triangular cylinder with different boundary conditions. Maxwell equations are discussed, along with wave equation and scattered, diffracted and fringe fields. Geometric optics, as well as the geometric theory of diffraction are explained. With MATLAB scripts included for several well-known electromagnetic diffraction problems, this book discusses diffraction fundamentals of two-dimensional structures with different boundary conditions and analytical numerical methods that are used to show diffraction. The book introduces fundamental concepts of electromagnetic problems, identities, and definitions for diffraction modeling. Basic coordinate systems, boundary conditions, wave equation, and Green’s function problem are given. The scattered fields, diffracted fields, and fringe fields, radar cross section for diffraction modeling are presented. Behaviors of electromagnetic waves around the two-dimensional canonical wedge and canonical strip are also explored. Diffraction of trilateral cylinders and wedges with rounded edges is investigated as well as double tip diffraction using Finite Difference Time Domain and Method of Moments. A MATLAB based virtual tool, developed with graphical user interface (GUI), for the visualization of both fringe currents and fringe waves is included, using numerical FDTD and MoM algorithm and High-Frequency Asymptotics approaches.

Book Coupled Electromagnetic Field Circuit Simulation  Modeling and Numerical Analysis

Download or read book Coupled Electromagnetic Field Circuit Simulation Modeling and Numerical Analysis written by Sascha Baumanns and published by Logos Verlag Berlin GmbH. This book was released on 2012 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today's most commonly used circuit models increasingly tend to lose their validity in circuit simulation due to rapid technological developments, miniaturization and increased complexity of integrated circuits. The starting point of this thesis was to tackle these challenges by refining the critical parts of the circuit by combining circuit simulation directly with distributed device models. The approach set out in this thesis couples partial differential equations for electromagnetic devices - modeled by Maxwell's equations -, to differential-algebraic equations, which describe basic circuit elements including memristors and the circuit's topology. First, Maxwell's equations are spatially discretized and a potential formulation is derived, the coupled system is then formulated as a differential-algebraic equation with a properly stated leading term and analyzed. Topological and modeling conditions are presented to guarantee the tractability index of these differential-algebraic equations to be no greater than two. Finally, local solvability, perturbation results and an algorithm to calculate consistent initializations are derived for a general class of differential-algebraic equations with a properly stated leading term having tractability index-2.

Book Analytical and Computational Methods in Electromagnetics

Download or read book Analytical and Computational Methods in Electromagnetics written by Ramesh Garg and published by Artech House. This book was released on 2008 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: Achieve optimal microwave system performance by mastering the principles and methods underlying today's powerful computational tools and commercial software in electromagnetics. This authoritative resource offers you clear and complete explanation of this essential electromagnetics knowledge, providing you with the analytical background you need to understand such key approaches as MoM (method of moments), FDTD (Finite Difference Time Domain) and FEM (Finite Element Method), and Green's functions. This comprehensive book includes all math necessary to master the material. Moreover, it features numerous solved problems that help ensure your understanding of key concepts throughout the book.

Book Electromagnetic Modeling by Finite Element Methods

Download or read book Electromagnetic Modeling by Finite Element Methods written by João Pedro A. Bastos and published by CRC Press. This book was released on 2003-04-01 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlike any other source in the field, this valuable reference clearly examines key aspects of the finite element method (FEM) for electromagnetic analysis of low-frequency electrical devices. The authors examine phenomena such as nonlinearity, mechanical force, electrical circuit coupling, vibration, heat, and movement for applications in the elect

Book Mathematical Models and Numerical Simulation in Electromagnetism

Download or read book Mathematical Models and Numerical Simulation in Electromagnetism written by Alfredo Bermúdez de Castro and published by Springer. This book was released on 2013-12-11 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book represents a basic support for a master course in electromagnetism oriented to numerical simulation. The main goal of the book is that the reader knows the boundary-value problems of partial differential equations that should be solved in order to perform computer simulation of electromagnetic processes. Moreover it includes a part devoted to electric circuit theory based on ordinary differential equations. The book is mainly oriented to electric engineering applications, going from the general to the specific, namely, from the full Maxwell’s equations to the particular cases of electrostatics, direct current, magnetostatics and eddy currents models. Apart from standard exercises related to analytical calculus, the book includes some others oriented to real-life applications solved with MaxFEM free simulation software.

Book Numerical Methods in Electromagnetics

Download or read book Numerical Methods in Electromagnetics written by W.H.A. SCHILDERS and published by Elsevier. This book was released on 2005-04-04 with total page 930 pages. Available in PDF, EPUB and Kindle. Book excerpt: This special volume provides a broad overview and insight in the way numerical methods are being used to solve the wide variety of problems in the electronics industry. Furthermore its aim is to give researchers from other fields of application the opportunity to benefit from the results wich have been obtained in the electronics industry.* Complete survey of numerical methods used in the electronic industry* Each chapter is selfcontained* Presents state-of-the-art applications and methods* Internationally recognised authors

Book Advances in Time Domain Computational Electromagnetic Methods

Download or read book Advances in Time Domain Computational Electromagnetic Methods written by Qiang Ren and published by John Wiley & Sons. This book was released on 2022-11-15 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Time-Domain Computational Electromagnetic Methods Discover state-of-the-art time domain electromagnetic modeling and simulation algorithms Advances in Time-Domain Computational Electromagnetic Methods delivers a thorough exploration of recent developments in time domain computational methods for solving complex electromagnetic problems. The book discusses the main time domain computational electromagnetics techniques, including finite-difference time domain (FDTD), finite-element time domain (FETD), discontinuous Galerkin time domain (DGTD), time domain integral equation (TDIE), and other methods in electromagnetic, multiphysics modeling and simulation, and antenna designs. The book bridges the gap between academic research and real engineering applications by comprehensively surveying the full picture of current state-of-the-art time domain electromagnetic simulation techniques. Among other topics, it offers readers discussions of automatic load balancing schemes for DG-FETD/SETD methods and convolution quadrature time domain integral equation methods for electromagnetic scattering. Advances in Time-Domain Computational Electromagnetic Methods also includes: Introductions to cylindrical, spherical, and symplectic FDTD, as well as FDTD for metasurfaces with GSTC and FDTD for nonlinear metasurfaces Explorations of FETD for dispersive and nonlinear media and SETD-DDM for periodic/ quasi-periodic arrays Discussions of TDIE, including explicit marching-on-in-time solvers for second-kind time domain integral equations, TD-SIE DDM, and convolution quadrature time domain integral equation methods for electromagnetic scattering Treatments of deep learning, including time domain electromagnetic forward and inverse modeling using a differentiable programming platform Ideal for undergraduate and graduate students studying the design and development of various kinds of communication systems, as well as professionals working in these fields, Advances in Time-Domain Computational Electromagnetic Methods is also an invaluable resource for those taking advanced graduate courses in computational electromagnetic methods and simulation techniques.

Book Mathematical Models and Numerical Simulation in Electromagnetism

Download or read book Mathematical Models and Numerical Simulation in Electromagnetism written by Alfredo Bermúdez de Castro and published by Springer. This book was released on 2014-07-22 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book represents a basic support for a master course in electromagnetism oriented to numerical simulation. The main goal of the book is that the reader knows the boundary-value problems of partial differential equations that should be solved in order to perform computer simulation of electromagnetic processes. Moreover it includes a part devoted to electric circuit theory based on ordinary differential equations. The book is mainly oriented to electric engineering applications, going from the general to the specific, namely, from the full Maxwell’s equations to the particular cases of electrostatics, direct current, magnetostatics and eddy currents models. Apart from standard exercises related to analytical calculus, the book includes some others oriented to real-life applications solved with MaxFEM free simulation software.

Book Scattering of Electromagnetic Waves

Download or read book Scattering of Electromagnetic Waves written by Leung Tsang and published by John Wiley & Sons. This book was released on 2004-04-07 with total page 732 pages. Available in PDF, EPUB and Kindle. Book excerpt: A timely and authoritative guide to the state of the art of wave scattering Scattering of Electromagnetic Waves offers in three volumes a complete and up-to-date treatment of wave scattering by random discrete scatterers and rough surfaces. Written by leading scientists who have made important contributions to wave scattering over three decades, this new work explains the principles, methods, and applications of this rapidly expanding, interdisciplinary field. It covers both introductory and advanced material and provides students and researchers in remote sensing as well as imaging, optics, and electromagnetic theory with a one-stop reference to a wealth of current research results. Plus, Scattering of Electromagnetic Waves contains detailed discussions of both analytical and numerical methods, including cutting-edge techniques for the recovery of earth/land parametric information. The three volumes are entitled respectively Theories and Applications, Numerical Simulation, and Advanced Topics. In the second volume, Numerical Simulations, Leung Tsang (University of Washington) Jin Au Kong (MIT), Kung-Hau Ding (Air Force Research Lab), and Chi On Ao (MIT) cover: * Layered media simulations * Rough surface and volume scattering simulations * Dense media models and simulations * Electromagnetic scattering by discrete scatterers and a buried object * Scattering by vertical cylinders above a surface * Electromagnetic waves scattering by vegetation * Computational methods and programs used for performing various simulations

Book Numerical and Analytical Methods in Electromagnetics

Download or read book Numerical and Analytical Methods in Electromagnetics written by Hristos Anastassiu and published by . This book was released on 2021 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: Like all branches of physics and engineering, electromagnetics relies on mathematical methods for modeling, simulation, and design procedures in all of its aspects (radiation, propagation, scattering, imaging, etc.). Originally, rigorous analytical techniques were the only machinery available to produce any useful results. In the 1960s and 1970s, emphasis was placed on asymptotic techniques, which produced approximations of the fields for very high frequencies when closed-form solutions were not feasible. Later, when computers demonstrated explosive progress, numerical techniques were utilized to develop approximate results of controllable accuracy for arbitrary geometries. In this Special Issue, the most recent advances in the aforementioned approaches are presented to illustrate the state-of-the-art mathematical techniques in electromagnetics.