EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Numerical Analysis of Reinforced Concrete Structures

Download or read book Numerical Analysis of Reinforced Concrete Structures written by Constantin Avram and published by Elsevier Publishing Company. This book was released on 1993 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: Very Good,No Highlights or Markup,all pages are intact.

Book Nonlinear Numerical Analysis of Reinforced Concrete

Download or read book Nonlinear Numerical Analysis of Reinforced Concrete written by American Society of Mechanical Engineers. Winter Annual Meeting and published by . This book was released on 1982 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computational Structural Concrete

Download or read book Computational Structural Concrete written by Ulrich Haussler-Combe and published by John Wiley & Sons. This book was released on 2022-11-21 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concrete is by far the most used building material due to its advantages: it is shapeable, cost-effective and available everywhere. Combined with reinforcement it provides an immense bandwidth of properties and may be customized for a huge range of purposes. Thus, concrete is the building material of the 20th century. To be the building material of the 21th century its sustainability has to move into focus. Reinforced concrete structures have to be designed expending less material whereby their load carrying potential has to be fully utilized. Computational methods such as Finite Element Method (FEM) provide essential tools to reach the goal. In combination with experimental validation, they enable a deeper understanding of load carrying mechanisms. A more realistic estimation of ultimate and serviceability limit states can be reached compared to traditional approaches. This allows for a significantly improved utilization of construction materials and a broader horizon for innovative structural designs opens up. However, sophisticated computational methods are usually provided as black boxes. Data is fed in, the output is accepted as it is, but an understanding of the steps in between is often rudimentary. This has the risk of misinterpretations, not to say invalid results compared to initial problem definitions. The risk is in particular high for nonlinear problems. As a composite material, reinforced concrete exhibits nonlinear behaviour in its limit states, caused by interaction of concrete and reinforcement via bond and the nonlinear properties of the components. Its cracking is a regular behaviour. The book aims to make the mechanisms of reinforced concrete transparent from the perspective of numerical methods. In this way, black boxes should also become transparent. Appropriate methods are described for beams, plates, slabs and shells regarding quasi-statics and dynamics. Concrete creeping, temperature effects, prestressing, large displacements are treated as examples. State of the art concrete material models are presented. Both the opportunities and the pitfalls of numerical methods are shown. Theory is illustrated by a variety of examples. Most of them are performed with the ConFem software package implemented in Python and available under open-source conditions.

Book Manual of Numerical Methods in Concrete

Download or read book Manual of Numerical Methods in Concrete written by M Y H Bangash and published by Thomas Telford. This book was released on 2001-07-27 with total page 940 pages. Available in PDF, EPUB and Kindle. Book excerpt: Manual of numerical methods in concrete aims to present a unified approach for the available mathematical models of concrete, linking them to finite element analysis and to computer programs in which special provisions are made for concrete plasticity, cracking and crushing with and without concrete aggregate interlocking. Creep, temperature, and shrinkage formulations are included and geared to various concrete constitutive models.

Book Numerical Modeling of Concrete Cracking

Download or read book Numerical Modeling of Concrete Cracking written by Guenter Hofstetter and published by Springer Science & Business Media. This book was released on 2011-10-08 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents the underlying theories of the different approaches for modeling cracking of concrete and provides a critical survey of the state-of-the-art in computational concrete mechanics. It covers a broad spectrum of topics related to modeling of cracks, including continuum-based and discrete crack models, meso-scale models, advanced discretization strategies to capture evolving cracks based on the concept of finite elements with embedded discontinuities and on the extended finite element method, and extensions to coupled problems such a hygro-mechanical problems as required in computational durability analyses of concrete structures.

Book Computational Methods for Reinforced Concrete Structures

Download or read book Computational Methods for Reinforced Concrete Structures written by Ulrich Häußler-Combe and published by John Wiley & Sons. This book was released on 2014-11-24 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book covers the application of numerical methods to reinforced concrete structures. To analyze reinforced concrete structures linear elastic theories are inadequate because of cracking, bond and the nonlinear and time dependent behavior of both concrete and reinforcement. These effects have to be considered for a realistic assessment of the behavior of reinforced concrete structures with respect to ultimate limit states and serviceability limit states. The book gives a compact review of finite element and other numerical methods. The key to these methods is through a proper description of material behavior. Thus, the book summarizes the essential material properties of concrete and reinforcement and their interaction through bond. These basics are applied to different structural types such as bars, beams, strut and tie models, plates, slabs and shells. This includes prestressing of structures, cracking, nonlinear stressstrain relations, creeping, shrinkage and temperature changes. Appropriate methods are developed for each structural type. Large displacement and dynamic problems are treated as well as short-term quasi-static problems and long-term transient problems like creep and shrinkage. Most problems are illustrated by examples which are solved by the program package ConFem, based on the freely available Python programming language. The ConFem source code together with the problem data is available under open source rules at concrete-fem.com. The author aims to demonstrate the potential and the limitations of numerical methods for simulation of reinforced concrete structures, addressing students, teachers, researchers and designing and checking engineers.

Book Finite Element Design of Concrete Structures

Download or read book Finite Element Design of Concrete Structures written by Guenter Axel Rombach and published by Thomas Telford. This book was released on 2004 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: In Finite Element Design of Concrete Structures: practical problems and their solutions the author addresses this blind belief in computer results by offering a useful critique that important details are overlooked due to the flood of information from the output of computer calculations. Indeed, errors in the numerical model may lead in extreme cases to structural failures as the collapse of the so-called Sleipner platform has demonstrated.

Book Finite Element Analysis of Reinforced Concrete Structures 2003

Download or read book Finite Element Analysis of Reinforced Concrete Structures 2003 written by Laura N. Lowes and published by . This book was released on 2006 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Finite Element Analysis of Reinforced Concrete Structures II

Download or read book Finite Element Analysis of Reinforced Concrete Structures II written by Jeremy Isenberg and published by . This book was released on 1993 with total page 734 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection contains 10 papers discussing finite element analysis of reinforced concrete structures presented at an international workshop held in New York, New York, June 2-5, 1991.

Book Structural Concrete

    Book Details:
  • Author : M. D. Kotsovos
  • Publisher : Thomas Telford
  • Release : 1995
  • ISBN : 9780727720276
  • Pages : 568 pages

Download or read book Structural Concrete written by M. D. Kotsovos and published by Thomas Telford. This book was released on 1995 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Shows the unifying generality of the proposed approach and the reliability of the ensuing computer package, for which the sole input is the specified cylinder strength of concrete and the yield is the stress of steel. This book offers an understanding of structural concrete behaviour, and illustrates the revision required for improving methods.

Book Computational Modelling of Concrete and Concrete Structures

Download or read book Computational Modelling of Concrete and Concrete Structures written by Günther Meschke and published by CRC Press. This book was released on 2022-05-22 with total page 1500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Modelling of Concrete and Concrete Structures contains the contributions to the EURO-C 2022 conference (Vienna, Austria, 23-26 May 2022). The papers review and discuss research advancements and assess the applicability and robustness of methods and models for the analysis and design of concrete, fibre-reinforced and prestressed concrete structures, as well as masonry structures. Recent developments include methods of machine learning, novel discretisation methods, probabilistic models, and consideration of a growing number of micro-structural aspects in multi-scale and multi-physics settings. In addition, trends towards the material scale with new fibres and 3D printable concretes, and life-cycle oriented models for ageing and durability of existing and new concrete infrastructure are clearly visible. Overall computational robustness of numerical predictions and mathematical rigour have further increased, accompanied by careful model validation based on respective experimental programmes. The book will serve as an important reference for both academics and professionals, stimulating new research directions in the field of computational modelling of concrete and its application to the analysis of concrete structures. EURO-C 2022 is the eighth edition of the EURO-C conference series after Innsbruck 1994, Bad Gastein 1998, St. Johann im Pongau 2003, Mayrhofen 2006, Schladming 2010, St. Anton am Arlberg 2014, and Bad Hofgastein 2018. The overarching focus of the conferences is on computational methods and numerical models for the analysis of concrete and concrete structures.

Book Computational Modelling of Reinforced Concrete Structures

Download or read book Computational Modelling of Reinforced Concrete Structures written by Ernest Hinton and published by Pine Ridge Press. This book was released on 1986 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computational Modelling of Concrete Structures

Download or read book Computational Modelling of Concrete Structures written by Nenad Bicanic and published by CRC Press. This book was released on 2014-03-04 with total page 1108 pages. Available in PDF, EPUB and Kindle. Book excerpt: The EURO-C conference series (Split 1984, Zell am See 1990, Innsbruck 1994, Badgastein 1998, St Johann im Pongau 2003, Mayrhofen 2006, Schladming 2010, St Anton am Alberg 2014) brings together researchers and practising engineers concerned with theoretical, algorithmic and validation aspects associated with computational simulations of concrete and concrete structures. The conference reviews and discusses research advancements and the applicability and robustness of methods and models for reliable analysis of complex concrete, reinforced concrete and pre-stressed concrete structures in engineering practice. Conference topics and invited papers cover both computational mechanics and computational modelling aspects of the analysis and design of concrete and concrete structures: * Constitutive and Multiscale Modelling of Concrete * Advances in Computational Modelling * Time Dependent and Multiphysics Problems * Performance of Concrete Structures The book is of special interest to researchers in computational concrete mechanics, as well as industry experts in complex nonlinear simulations of concrete structures.

Book Numerical Modeling Strategies for Sustainable Concrete Structures

Download or read book Numerical Modeling Strategies for Sustainable Concrete Structures written by Pierre Rossi and published by Springer Nature. This book was released on 2022-06-30 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume highlights the latest advances, innovations, and applications in the field of sustainable concrete structures, as presented by scientists and engineers at the RILEM International Conference on Numerical Modeling Strategies for Sustainable Concrete Structures (SSCS), held in Marseille, France, on July 4-6, 2022. It demonstrates that numerical methods (finite elements, finite volumes, finite differences) are a relevant response to the challenge to optimize the utilization of cement in concrete constructions while checking that these constructions have a lifespan compatible with the stakes of sustainable development. They are indeed accurate tools for an optimized design of concrete constructions, and allow us to consider all types of complexities: for example, those linked to rheological, physicochemical and mechanical properties of concrete, those linked to the geometry of the structures or even to the environmental boundary conditions. This optimization must also respect constraints of time, money, security, energy, CO2 emissions, and, more generally, life cycle more reliably than the codes and analytical approaches currently used. Numerical methods are, undoubtedly, the best calculation tools at the service of concrete eco-construction. The contributions present traditional and new ideas that will open novel research directions and foster multidisciplinary collaboration between different specialists.

Book Fracture mechanics of concrete  Structural application and numerical calculation

Download or read book Fracture mechanics of concrete Structural application and numerical calculation written by George C. Sih and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concrete has traditionally been known as a material used widely in the construction of roads, bridges and buildings. Since cost effectiveness has always been one of the more important aspects of design, concrete, when reinforced and/or prestressed, is finding more use in other areas of application such as floating marine structures, storage tanks, nuclear vessel containments and a host of other structures. Because of the demand for concrete to operate under different loading and environmen tal conditions, increasing attention has been paid to study concrete specimens and structure behavior. A subject of major concern is how the localized segregation of the constituents in concrete would affect its global behavior. The degree of nonhomogeneity due to material property and damage. by yielding and/or cracking depends on the size scale and loading rate under consideration. Segregation or clustering of aggregates at the macroscopic level will affect specimen behavior to a larger degree than it would to a large structure such as a dam. Hence, a knowledge of concrete behavior over a wide range of scale is desired. The parameters governing micro-and macro-cracking and the techniques for evaluating and observing the damage in concrete need to be better understood. This volume is intended to be an attempt in this direction. The application of Linear Elastic Fracture Mechanics to concrete is discussed in several of the chapters.

Book Computational Modelling of Concrete Structures

Download or read book Computational Modelling of Concrete Structures written by Gunther Meschke and published by CRC Press. This book was released on 2006-03-16 with total page 952 pages. Available in PDF, EPUB and Kindle. Book excerpt: This conference proceedings brings together the work of researchers and practising engineers concerned with computational modelling of complex concrete, reinforced concrete and prestressed concrete structures in engineering practice. The subjects considered include computational mechanics of concrete and other cementitious materials, including masonry. Advanced discretisation methods and microstructural aspects within multi-field and multi-scale settings are discussed, as well as modelling formulations and constitutive modelling frameworks and novel experimental programmes. The conference also considered the need for reliable, high-quality analysis and design of concrete structures in regard to safety-critical structures, with a view to adopting these in codes of practice or recommendations. The book is of special interest to researchers in computational mechanics, and industry experts in complex nonlinear simulations of concrete structures.