EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Nucleation and Growth of Nanoscale Metal Silicides in Nanowires of Silicon

Download or read book Nucleation and Growth of Nanoscale Metal Silicides in Nanowires of Silicon written by Yi-Chia Chou and published by . This book was released on 2010 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Silicon and Silicide Nanowires

Download or read book Silicon and Silicide Nanowires written by Yu Huang and published by CRC Press. This book was released on 2016-04-19 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoscale materials are showing great promise in various electronic, optoelectronic, and energy applications. Silicon (Si) has especially captured great attention as the leading material for microelectronic and nanoscale device applications. Recently, various silicides have garnered special attention for their pivotal role in Si device engineering

Book Nanoscale Contact Engineering for Si Silicide Nanowire Devices

Download or read book Nanoscale Contact Engineering for Si Silicide Nanowire Devices written by Yung-Chen Lin and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal silicides have been used in silicon technology as contacts to achieve high device performance and desired device functions. The growth and applications of silicide materials have recently attracted increasing interest for nanoscale device applications. Nanoscale silicide materials have been demonstrated with various synthetic approaches. Solid state reaction wherein high quality silicides form through diffusion of metal atoms into silicon nano-templates and the subsequent phase transformation caught significant attention for the fabrication of nanoscale Si devices. Very interestingly, studies on the diffusion and phase transformation processes at nanoscale have indicated possible deviations from the bulk and the thin film system. Here we studied growth kinetics, electronic properties and device applications of nanoscale silicides formed through solid state reaction. We have grown single crystal PtSi nanowires and PtSi/Si/PtSi nanowire heterostructures through solid state reaction. TEM studies show that the heterostructures have atomically sharp interfaces free of defects. Electrical measurement of PtSi nanowires shows a low resistivity of ∼28.6 μΩ*cm and a high breakdown current density beyond 108 A/cm2. Furthermore, using single-crystal PtSi/Si/PtSi nanowire heterostructures with atomically clean interfaces, we have fabricated p-channel enhancement mode transistors with the best reported performance for intrinsic silicon nanowires to date. In our results, silicide can provide a clean and no Fermi level pinning interface and then silicide can form Ohmic-contact behavior by replacing the source/drain metal with PtSi. It has been proven by our experiment by contacting PtSi with intrinsic Si nanowires (no extrinsic doping) to achieve high performance p-channel device. By utilizing the same approach, single crystal MnSi nanowires and MnSi/Si/MnSi nanowire heterojunction with atomically sharp interfaces can also been grown. Electrical transport studies on MnSi nanowire shows an abrupt resistance reduction due to the spin ordering at ~29.7 K.A negative magnetoresistance (MR) ~1.8% under 5 Tesla at 1.6 K is achieved, demonstrating the ferromagnetic behavior of MnSi. Furthermore, using the MnSi/p-Si/MnSi heterostructure, we have studied the charge injection at various temperatures via the Schottky barrier, and the spin scattering was observed through magnetotransport studies of MnSi/p-Si/MnSi heterojunction. Our results represent the first report of magnetic contact fabrication through the formation of single crystal heterojunction nanowires and the first demonstration of spin injection and detection in such Si nanowire devices. The magnetic silicides approach thus opens a new pathway to create ferromagnetic/semiconductor junction with clean and sharp interface, and maysignificantly impact the future of spintronics. Beyond those applications, silicide phase control at nanoscale is investigated. Three nickel phases, Ni31Si12, Ni2Si and NiSi2 are observed in one step annealing at 550 oC. NiSi2 grows initially through the Si NW and then the area close to nickel pad transforms into the nickel-rich phase, Ni31Si12. With prolonged annealing over 5 minutes, the Ni2Si starts to show up in between Ni31Si12 and NiSi2. The growth sequence is different from the thin film system where Ni2Si usually appears as the initial phase in the beginning as the annealing temperature is higher than 400 oC. Interfacial energy differences and surface free energy are believed to play an important role here at the nanoscale, which lead to the formation of normally unfavorable silicide phases in Si NWs. In addition, Si/SiOx core/shell NW structure is used to explore the phase transformation of silicides in the structure-confined nano environment. Nickel silicides in the structure-confined core/shell Si NW shares the similar phase formation sequences as those appeared in the bared SiNWs, while the growth rate is significantly retarded. This may be attributed to the high compressive stress built-in in the core/shell NW structure that retards the diffusion of the nickel atom as well as limits the volume expansion of the metal-rich phases. As a result, the high stress at this finite scale hinders the continuous growth of Ni31Si12 into the core/shell NWs and totally eliminates the formation of Ni2Si in core/shell NWs with thick oxide shells (~ 50 nm). Through these studies, we have demonstrated first time the phase formation sequences of nickel silicides in Si and Si/SiOx NW structures, which is of great importance for reliable contact engineering for Si NW devices. Furthermore, we have provided a clear picture of the hindered nickel silicide growth in confined nanoscale environment and showed the deviated behavior of silicides growth under stress. The information rendered here will be useful for Si NW device applications as well as for the silicon device engineering at nanoscale in general. To further investigate the oxide shell effect, Mn5Si3 and Fe5Ge3 NW were grown within various oxide thickness to explore the nucleation and growth in the nanowire structure. A oxide shell exerted a compressive stress on the silicide or germanide materials will make those materials with single-crystal properties. Interestingly, single-crystal growth of contact materials can be also implemented for germanide materials. The iron-rich germanide, Fe5Ge3, was successfully grown with single-crystal properties. It shows ferromagnetic properties with a Curie temperature above the room temperature verified by magnetic force microscope (MFM). Two different epitaxial relations found at germanide/germanium interface due to the different sizes of the germanium NW templates. These two different crystal structures exhibited magnetic anisotropy in magnetic force microscope (MFM) measurement, showing differently preferred domain orientations. In-plane and out-of-plane magnetization in the Fe5Ge3 NWs are observed in our experiment. The crystal orientation or engineering stress may have influence on the magnetic domain structure. This ferromagnetic contact material may open the way for spintronics to grow the magnetic materials on the semiconducting materials and control the direction of magnetization in the future. Those silicide studies indicated silicide metal-heterojunction field effect transistor has excellent device performance. In addition, Si channel region can be shrunk to less than 10 nm and also keep semiconducting properties without high leakage current. This approach has the potential for future nanoelectronics. However, silicide phase transformation shows a deviated behavior from the studies in bulk system. It may be associated with stress effect or nucleation behavior at nanosclae, leading the different formation phase or sequence. For those interesting phenomena, it has attracted more and more attention and may gain more insight studies in the near future.

Book Growth Mechanisms and Novel Properties of Silicon Nanostructures from Quantum Mechanical Calculations

Download or read book Growth Mechanisms and Novel Properties of Silicon Nanostructures from Quantum Mechanical Calculations written by Rui-Qin Zhang and published by Springer Science & Business Media. This book was released on 2013-11-22 with total page 72 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this volume, Prof. Zhang reviews the systematic theoretical studies in his group on the growth mechanisms and properties of silicon quantum dots, nanotubes and nanowires, including: mechanisms of oxide-assisted growth of silicon nanowires, energetic stability of pristine silicon nanowires and nanotubes, thermal stability of hydrogen terminated silicon nanostructures, size-dependent oxidation of hydrogen terminated silicon nanostructures, excited-state relaxation of hydrogen terminated silicon nanodots, and direct-indirect energy band transitions of silicon nanowires and sheets by surface engineering and straining. He also discusses the potential applications of these findings. This book will mainly benefit those members of the scientific and research community working in nanoscience, surface science, nanomaterials and related fields.

Book Semiconductor Nanowires

    Book Details:
  • Author : Jie Xiang
  • Publisher : Royal Society of Chemistry
  • Release : 2015
  • ISBN : 1849738157
  • Pages : 463 pages

Download or read book Semiconductor Nanowires written by Jie Xiang and published by Royal Society of Chemistry. This book was released on 2015 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: A timely reference from leading experts on semiconductor nanowires and their applications.

Book One Dimensional Nanostructures

Download or read book One Dimensional Nanostructures written by Tianyou Zhai and published by John Wiley & Sons. This book was released on 2012-10-19 with total page 857 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reviews the latest research breakthroughs and applications Since the discovery of carbon nanotubes in 1991, one-dimensional nanostructures have been at the forefront of nanotechnology research, promising to provide the building blocks for a new generation of nanoscale electronic and optoelectronic devices. With contributions from 68 leading international experts, this book reviews both the underlying principles as well as the latest discoveries and applications in the field, presenting the state of the technology. Readers will find expert coverage of all major classes of one-dimensional nanostructures, including carbon nanotubes, semiconductor nanowires, organic molecule nanostructures, polymer nanofibers, peptide nanostructures, and supramolecular nanostructures. Moreover, the book offers unique insights into the future of one-dimensional nanostructures, with expert forecasts of new research breakthroughs and applications. One-Dimensional Nanostructures collects and analyzes a wealth of key research findings and applications, with detailed coverage of: Synthesis Properties Energy applications Photonics and optoelectronics applications Sensing, plasmonics, electronics, and biosciences applications Practical case studies demonstrate how the latest applications work. Tables throughout the book summarize key information, and diagrams enable readers to grasp complex concepts and designs. References at the end of each chapter serve as a gateway to the literature in the field. With its clear explanations of the underlying principles of one-dimensional nanostructures, this book is ideal for students, researchers, and academics in chemistry, physics, materials science, and engineering. Moreover, One-Dimensional Nanostructures will help readers advance their own investigations in order to develop the next generation of applications.

Book Silicon and Silicide Nanowires

Download or read book Silicon and Silicide Nanowires written by Yu Huang and published by . This book was released on 2013 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoscale materials are showing great promise in various electronic, optoelectronic, and energy applications. Silicon (Si) has especially captured great attention as the leading material for microelectronic and nanoscale device applications. Recently, various silicides have garnered special attention for their pivotal role in Si device engineering and for the vast potential they possess in fields such as thermoelectricity and magnetism. The fundamental understanding of Si and silicide material processes at nanoscale plays a key role in achieving device structures and performance that meet real-world requirements and, therefore, demands investigation and exploration of nanoscale device applications. This book comprises the theoretical and experimental analysis of various properties of silicon nanocrystals, research methods and techniques to prepare them, and some of their promising applications.

Book Silicide silicon Heterointerfaces  Reaction Kinetics and Ultra short Channel Devices

Download or read book Silicide silicon Heterointerfaces Reaction Kinetics and Ultra short Channel Devices written by Wei Tang and published by . This book was released on 2012 with total page 103 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nickel silicide is one of the electrical contact materials widely used on very large scale integration (VLSI) of Si devices in microelectronic industry. This is because the silicide/silicon interface can be formed in a highly controlled manner to ensure reproducibility of optimal structural and electrical properties of the metal-Si contacts. These advantages can be inherited to Si nanowire (NW) field-effect transistors (FET) device. Due to the technological importance of nickel silicides, fundamental materials science of nickel silicides formation (Ni-Si reaction), especially in nanoscale, has raised wide interest and stimulate new insights and understandings. In this dissertation, in-situ transmission electron microscopy (TEM) in combination with FET device characterization will be demonstrated as useful tools in nano-device fabrication as well as in gaining insights into the process of nickel silicide formation. The shortest transistor channel length (17 nm) fabricated on a vapor-liquid-solid (VLS) grown silicon nanowire (NW) has been demonstrated by controlled reaction with Ni leads on an in-situ transmission electron microscope (TEM) heating stage at a moderate temperature of 400 ðC. NiSi2 is the leading phase, and the silicide-silicon interface is an atomically sharp type-A interface. At such channel lengths, high maximum on-currents of 890 (uA/um) and a maximum transconductance of 430 ([mu]S/[mu]m) were obtained, which pushes forward the performance of bottom-up Si NW Schottky barrier field-effect transistors (SB-FETs). Through accurate control over the silicidation reaction, we provide a systematic study of channel length dependent carrier transport in a large number of SB-FETs with channel lengths in the range of (17 nm - 3.6 [mu]m). Our device results corroborate with our transport simulations and reveal a characteristic type of short channel effects in SB-FETs, both in on- and off-state, which is different from that in conventional MOSFETs, and that limits transport parameter extraction from SB-FETs using the conventional field-effect transconductance measurements. In addition to application of silicide in Si NW devices, the fundamental materials science of Ni-Si reaction is also of interest, and in-situ TEM has been shown to be a useful tool in obtaining dynamical phase transformation information and therefore providing insights into the new phase formation process. By using in-situ TEM techniques, a new gold catalyzed solid-liquid-solid (SLS) silicide phase growth mechanism in Si NWs is observed for the first time, which shows the liquid mediating growth can be also used in synthesis of metallic silicide nanowires. SLS is analogous to the VLS in both being liquid-mediated, but is fundamentally different in terms of nucleation and mass transport. In our SLS growth at 700 ðC, the Ni atoms are supplied from remote Ni particles by interstitial diffusion through Si NW into the pre-existing Au particle at the tip. Upon supersaturation of both Ni and Si in Au, octahedral shape of Ni disilicide phase nucleates in the middle of the Au liquid alloy, which thereafter sweeps through the Si NW and transform Si into NiSi2. Dissolution of Si by Au(Si, Ni) liquid mediating layer and growth of NiSi2 are shown to proceed in different manners. Using in-situ TEM technique, we also have the chance to present direct evidence that Si (111) twin boundaries and Si grain boundaries on Si NW surface can be efficient heterogeneous nucleation site for the silicide growth. By analyzing the nucleation site favorability, unlike other typical FCC materials like Cu or Si, we infer (111) twin defects in NiSi2 may have high interfacial energy. These results may provide valuable insights into the MOSFET source/drain (S/D) contact silicide formation process when defects are either unintentionally formed during the process or intentionally introduced to engineering the strain along the channel.

Book Ni Silicide Contacts

    Book Details:
  • Author : Mike El Kousseifi
  • Publisher :
  • Release : 2014
  • ISBN :
  • Pages : 0 pages

Download or read book Ni Silicide Contacts written by Mike El Kousseifi and published by . This book was released on 2014 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis focuses on the phenomena that occur during the reaction between metal and silicon (silicide) on thin films and nanowires. Indeed, phenomena such as nucleation, lateral growth, normal growth and diffusion must be understood to make contacts for future microelectronic devices. The comparison between the silicide formation on thin films and nanowires is one of the main aspects of this work. Atomic distribution in 3D for the elements in different Ni silicide phase was obtained by atom probe tomography (APT). To enable the analysis of different types of silicon nanowires by APT, several original methods for sample preparation by focused ion beam has been developed and tested. On the other hand, in situ and real-time analysis by X-ray diffraction during the reactive diffusion helped to highlight the importance of the nucleation of a phase and to determine the kinetics of formation of Ni(Pt) silicides, including the reaction on the interfaces and the lateral growth. The characteristic shape associated with the lateral growth was determined by ex-situ transmission electron microscopy analyzes and was compared with the existing theoretical models. Moreover, the determination of the fastest diffusing species by APT provided information on the mechanisms of phase formation and stress relaxation in the silicide.

Book Silicon based Nanomaterials

Download or read book Silicon based Nanomaterials written by Handong Li and published by Springer Science & Business Media. This book was released on 2013-10-02 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: A variety of nanomaterials have excellent optoelectronic and electronic properties for novel device applications. At the same time, and with advances in silicon integrated circuit (IC) techniques, compatible Si-based nanomaterials hold promise of applying the advantages of nanomaterials to the conventional IC industry. This book focuses not only on silicon nanomaterials, but also summarizes up-to-date developments in the integration of non-silicon nanomaterials on silicon. The book showcases the work of leading researchers from around the world who address such key questions as: Which silicon nanomaterials can give the desired optical, electrical, and structural properties, and how are they prepared? What nanomaterials can be integrated on to a silicon substrate and how is this accomplished? What Si-based nanomaterials may bring a breakthrough in this field? These questions address the practical issues associated with the development of nanomaterial-based devices in applications areas such as solar cells, luminous devices for optical communication (detectors, lasers), and high mobility transistors. Investigation of silicon-based nanostructures is of great importance to make full use of nanomaterials for device applications. Readers will receive a comprehensive view of Si-based nanomaterials, which will hopefully stimulate interest in developing novel nanostructures or techniques to satisfy the requirements of high performance device applications. The goal is to make nanomaterials the main constituents of the high performance devices of the future.

Book Nucleation and growth of thin film transition metal silicides

Download or read book Nucleation and growth of thin film transition metal silicides written by El-Saied Mahmoud Ibrahim Aly and published by . This book was released on 1983 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Kinetic Competition Growth Mechanism and Phase Manipulation of Silicide Nanowires in Solid State Reaction

Download or read book Kinetic Competition Growth Mechanism and Phase Manipulation of Silicide Nanowires in Solid State Reaction written by Yu Chen and published by . This book was released on 2014 with total page 82 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first phase selection and the phase formation sequence between metal and silicon (Si) couples are indispensably significant to microelectronics. With increasing scaling of device dimension to nano regime, established thermodynamic models in bulk and thin film fail to apply in one dimensional (1-D) nanostructures. Herein, we use a kinetic competition model to explain the phase formation sequence of 1-D nickel (Ni) silicides: multiple Ni silicides coexist at the initial stage and then the fastest one wins out as the first phase in a following growth competition. With kinetic parameters extracted from in-situ transmission electron microscope (TEM) observations, we quantitatively explain the unique size dependant first phase formation and the phase formation sequence changes in 1-D structures. We can further control the first phase by selectively enhancing or suppressing the growth rate of silicides through template structure modifications. Growth rate diffusion limited phases can be greatly enhanced in a porous Si nanowire (NW) template due to short diffusion paths. On the other hand, a thick aluminum oxide (Al2O3) shell around the NW is applied to impede the growth of large volume diffusion limited phases including Ni31Si12, [delta]-Ni2Si and [theta]-Ni2Si. Moreover, a thin platinum (Pt) interlayer between Si and Ni is used to suppress the nucleation of NiSi2. Together, with the thick shell and Pt interlayer, we can suppress all competing silicides and render slow growing NiSi to form as the first phase. The resistivity of Pt doped NiSi (denoted as Ni(Pt)Si) NW are found compatible to pure NiSi from a two terminal and four terminal measurement. Controlled formation of Ni31Si12, [delta]-Ni2Si, [theta]-Ni2Si, NiSi or NiSi2 as the first phase has also been achieved. To examine the kinetic competition model, 1-D cobalt (Co) and palladium (Pd) silicide formations are also studied and analyzed kinetically. A thick shell is found effective to suppress the Pd silicide NW broken at the interface.

Book Semiconductor Nanowires

    Book Details:
  • Author : Wei Lu
  • Publisher : Royal Society of Chemistry
  • Release : 2014-12-02
  • ISBN : 1782625208
  • Pages : 463 pages

Download or read book Semiconductor Nanowires written by Wei Lu and published by Royal Society of Chemistry. This book was released on 2014-12-02 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor nanowires were initially discovered in late 90's and since then there has been an explosion in the research of their synthesis and understanding of their structures, growth mechanisms and properties. The realisation of their unique electrical, optical and mechanical properties has led to a great interest for their use in electronics, energy generation and storage. This book provides a timely reference on semiconductor nanowires including an introduction to their synthesis and properties and specific chapters focusing on the different applications including photovoltaics, nanogenerators, transistors, biosensors and photonics. This is the first book dedicated to Semiconductor Nanowires and provides an invaluable resource for researchers already working in the area as well as those new to the field. Edited by leading experts in the field and with contributions from well-known scientists, the book will appeal to both those working on fundamental nanomaterial research and those commercially interested in their applications.

Book Semiconductor Manufacturing Handbook 2E  PB

Download or read book Semiconductor Manufacturing Handbook 2E PB written by Hwaiyu Geng and published by McGraw Hill Professional. This book was released on 2017-10-06 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thoroughly Revised, State-of-the-Art Semiconductor Design, Manufacturing, and Operations Information Written by 70 international experts and reviewed by a seasoned technical advisory board, this fully updated resource clearly explains the cutting-edge processes used in the design and fabrication of IC chips, MEMS, sensors, and other electronic devices. Semiconductor Manufacturing Handbook, Second Edition, covers the emerging technologies that enable the Internet of Things, the Industrial Internet of Things, data analytics, artificial intelligence, augmented reality, and and smart manufacturing. You will get complete details on semiconductor fundamentals, front- and back-end processes, nanotechnology, photovoltaics, gases and chemicals, fab yield, and operations and facilities. •Nanotechnology and microsystems manufacturing •FinFET and nanoscale silicide formation •Physical design for high-performance, low-power 3D circuits •Epitaxi, anneals, RTP, and oxidation •Microlithography, etching, and ion implantations •Physical, chemical, electrochemical, and atomic layer vapor deposition •Chemical mechanical planarization •Atomic force metrology •Packaging, bonding, and interconnects •Flexible hybrid electronics •Flat-panel,flexible display electronics, and photovoltaics •Gas distribution systems •Ultrapure water and filtration •Process chemicals handling and abatement •Chemical and slurry handling systems •Yield management, CIM, and factory automation •Manufacturing execution systems •Advanced process control •Airborne molecular contamination •ESD controls in clean-room environments •Vacuum systems and RF plasma systems •IC manufacturing parts cleaning technology •Vibration and noise design •And much more

Book Handbook of Solid State Diffusion  Volume 2

Download or read book Handbook of Solid State Diffusion Volume 2 written by Aloke Paul and published by Elsevier. This book was released on 2017-04-13 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Solid State Diffusion, Volume 2: Diffusion Analysis in Material Applications covers the basic fundamentals, techniques, applications, and latest developments in the area of solid-state diffusion, offering a pedagogical understanding for students, academicians, and development engineers. Both experimental techniques and computational methods find equal importance in the second of this two volume set. Volume 2 covers practical issues on diffusion phenomena in bulk, thin film, and in nanomaterials. Diffusion related problems and analysis of methods in industrial applications, such as electronic industry, high temperature materials, nuclear materials, and superconductor materials are discussed. - Presents a handbook with a short mathematical background and detailed examples of concrete applications of the sophisticated methods of analysis - Enables readers to learn the basic concepts of experimental approaches and the computational methods involved in solid-state diffusion - Covers bulk, thin film, and nanomaterials - Introduces the problems and analysis in important materials systems in various applications - Collates contributions from academic and industrial problems from leading scientists involved in developing key concepts across the globe

Book HRTEM and EELS Studies of Nanoscale Structured Electronic Materials

Download or read book HRTEM and EELS Studies of Nanoscale Structured Electronic Materials written by Jiaming Zhang and published by . This book was released on 2007 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: