EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Nuclear Fuel Cycle System Simulation Tool Based on High fidelity Component Modeling

Download or read book Nuclear Fuel Cycle System Simulation Tool Based on High fidelity Component Modeling written by and published by . This book was released on 2014 with total page 76 pages. Available in PDF, EPUB and Kindle. Book excerpt: The DOE is currently directing extensive research into developing fuel cycle technologies that will enable the safe, secure, economic, and sustainable expansion of nuclear energy. The task is formidable considering the numerous fuel cycle options, the large dynamic systems that each represent, and the necessity to accurately predict their behavior. The path to successfully develop and implement an advanced fuel cycle is highly dependent on the modeling capabilities and simulation tools available for performing useful relevant analysis to assist stakeholders in decision making. Therefore a high-fidelity fuel cycle simulation tool that performs system analysis, including uncertainty quantification and optimization was developed. The resulting simulator also includes the capability to calculate environmental impact measures for individual components and the system. An integrated system method and analysis approach that provides consistent and comprehensive evaluations of advanced fuel cycles was developed. A general approach was utilized allowing for the system to be modified in order to provide analysis for other systems with similar attributes. By utilizing this approach, the framework for simulating many different fuel cycle options is provided. Two example fuel cycle configurations were developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized waste inventories.

Book Nuclear Fuel Cycle Simulation System

Download or read book Nuclear Fuel Cycle Simulation System written by International Atomic Energy Agency and published by . This book was released on 2019-05-22 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Nuclear Fuel Cycle Simulation System (NFCSS) is a scenario based computer simulation tool that can model various nuclear fuel cycle options in various types of nuclear reactors. It is very efficient and accurate in answering questions such as: the nuclear mineral resources and technical infrastructure needed for the front end of the nuclear fuel cycle; the amounts of used fuel, actinide nuclides and high level waste generated for a given reactor fleet size; and the impact of introducing recycling of used fuel on mineral resource savings and waste minimization. Since the first publication on the NFCSS as IAEA-TECDOC-1535 in 2007, there have been significant improvements in the implementation of the NFCSS, including a new extension to thorium fuel cycles, methods to calculate decay heat and radiotoxicity, and demonstration applications to innovative reactors.

Book Designing a Component Based Architecture for the Modeling and Simulation of Nuclear Fuels and Reactors

Download or read book Designing a Component Based Architecture for the Modeling and Simulation of Nuclear Fuels and Reactors written by and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Concerns over the environment and energy security have recently prompted renewed interest in the U.S. in nuclear energy. Recognizing this, the U.S. Dept. of Energy has launched an initiative to revamp and modernize the role that modeling and simulation plays in the development and operation of nuclear facilities. This Nuclear Energy Advanced Modeling and Simulation (NEAMS) program represents a major investment in the development of new software, with one or more large multi-scale multi-physics capabilities in each of four technical areas associated with the nuclear fuel cycle, as well as additional supporting developments. In conjunction with this, we are designing a software architecture, computational environment, and component framework to integrate the NEAMS technical capabilities and make them more accessible to users. In this report of work very much in progress, we lay out the 'problem' we are addressing, describe the model-driven system design approach we are using, and compare them with several large-scale technical software initiatives from the past. We discuss how component technology may be uniquely positioned to address the software integration challenges of the NEAMS program, outline the capabilities planned for the NEAMS computational environment and framework, and describe some initial prototyping activities.

Book VISION   Verifiable Fuel Cycle Simulation of Nuclear Fuel Cycle Dynamics

Download or read book VISION Verifiable Fuel Cycle Simulation of Nuclear Fuel Cycle Dynamics written by J. J. Jacobson and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The U.S. DOE Advanced Fuel Cycle Initiative's (AFCI) fundamental objective is to provide technology options that - if implemented - would enable long-term growth of nuclear power while improving sustainability and energy security. The AFCI organization structure consists of four areas; Systems Analysis, Fuels, Separations and Transmutations. The Systems Analysis Working Group is tasked with bridging the program technical areas and providing the models, tools, and analyses required to assess the feasibility of design and deployment options and inform key decision makers. An integral part of the Systems Analysis tool set is the development of a system level model that can be used to examine the implications of the different mixes of reactors, implications of fuel reprocessing, impact of deployment technologies, as well as potential "exit" or "off ramp" approaches to phase out technologies, waste management issues and long-term repository needs. The Verifiable Fuel Cycle Simulation Model (VISION) is a computer-based simulation model that allows performing dynamic simulations of fuel cycles to quantify infrastructure requirements and identify key trade-offs between alternatives. It is based on the current AFCI system analysis tool "DYMOND-US" functionalities in addition to economics, isotopic decay, and other new functionalities. VISION is intended to serve as a broad systems analysis and study tool applicable to work conducted as part of the AFCI and Generation IV reactor development studies.

Book Essential Physics for Fuel Cycle Modeling

Download or read book Essential Physics for Fuel Cycle Modeling written by Anthony Michael Scopatz and published by . This book was released on 2011 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nuclear fuel cycles (NFC) are the collection of interconnected processes which generate electricity through nuclear power. Due to the high degree of coupling between components even in the simplest cycles, the need for a dynamic fuel cycle simulator and analysis framework arises. The work presented herein develops essential physics models of nuclear power reactors and incorporate them into a NFC simulation framework. First, a one-energy group reactor model is demonstrated. This essential physics model is then to simulate a sampling fuel cycles which are perturbations of well known base-case cycles. Because the NFC may now be simulated quickly, stochastically modeling many fuel cycle realizations dramatically expands the parameter space which may be analyzed. Finally, a multigroup reactor model which incorporates spectral changes as a function of burnup is presented to increase the fidelity of the original one-group reactor. These methods form a suite of modeling technologies which reach from the lowest levels (individual components) to the highest (inter-cycle comparisons). Prior to the development of this model suite, such broad-ranging analysis had been unrealistic to perform. The work here thus presents a new, multi-scale approach to fuel cycle system design.

Book Nuclear Fuel Cycle Simulation System  VISTA   IAEA TECDOC Series

Download or read book Nuclear Fuel Cycle Simulation System VISTA IAEA TECDOC Series written by International Atomic Energy Agency and published by . This book was released on 2007 with total page 102 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Nuclear Fuel Cycle Simulation System (VISTA) is a simulation system which estimates long term nuclear fuel cycle material and service requirements as well as the material arising from the operation of nuclear fuel cycle facilities and nuclear power reactors. It is a scenario based simulation tool which can model several nuclear fuel cycle options including existing nuclear power reactor types and future possible reactor types. The past operations of the power reactors and fuel cycle facilities can be modelled in the system, in order to estimate the current amount of spent fuel stored or to.

Book Nuclear Fuel Cycle Optimization

Download or read book Nuclear Fuel Cycle Optimization written by P. Silvennoinen and published by Elsevier. This book was released on 2013-10-22 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nuclear Fuel Cycle Optimization: Methods and Modelling Techniques discusses applicable methods for analysis of fuel cycle logistics and optimization and evaluation of the economics of various reactor strategies. The opening chapter covers the nuclear fuel cycle, while the next chapter tackles uranium supply and demand. Chapter 3 discusses basic model of the light water reactor (LWR). The fourth chapter talks about the resolution of uncertainties, and the fifth chapter discusses the assessment of proliferation risks. Chapter 6 covers multigoal optimization, while Chapter 7 deals with the generalized fuel cycle models. The eighth chapter covers reactor strategy calculations, whereas the last chapter discusses interface with energy strategy. The book will appeal to students of energy economics or of nuclear engineering.

Book VISION    A Dynamic Model of the Nuclear Fuel Cycle

Download or read book VISION A Dynamic Model of the Nuclear Fuel Cycle written by and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The Advanced Fuel Cycle Initiative's (AFCI) fundamental objective is to provide technology options that - if implemented - would enable long-term growth of nuclear power while improving sustainability and energy security. The AFCI organization structure consists of four areas; Systems Analysis, Fuels, Separations and Transmutations. The Systems Analysis Working Group is tasked with bridging the program technical areas and providing the models, tools, and analyses required to assess the feasibility of design and deploy?ment options and inform key decision makers. An integral part of the Systems Analysis tool set is the development of a system level model that can be used to examine the implications of the different mixes of reactors, implications of fuel reprocessing, impact of deployment technologies, as well as potential?exit? or?off ramp? approaches to phase out technologies, waste management issues and long-term repository needs. The Verifiable Fuel Cycle Simulation Model (VISION) is a computer-based simulation model that allows performing dynamic simulations of fuel cycles to quantify infrastructure requirements and identify key trade-offs between alternatives. VISION is intended to serve as a broad systems analysis and study tool applicable to work conducted as part of the AFCI (including costs estimates) and Generation IV reactor development studies.

Book An Agent based Modeling Framework and Application for the Generic Nuclear Fuel Cycle

Download or read book An Agent based Modeling Framework and Application for the Generic Nuclear Fuel Cycle written by and published by . This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Key components of a novel methodology and implementation of an agent-based, dynamic nuclear fuel cycle simulator, Cyclus , are presented. The nuclear fuel cycle is a complex, physics-dependent supply chain. To date, existing dynamic simulators have not treated constrained fuel supply, time-dependent, isotopic-quality based demand, or fuel fungibility particularly well. Utilizing an agent-based methodology that incorporates sophisticated graph theory and operations research techniques can overcome these deficiencies. This work describes a simulation kernel and agents that interact with it, highlighting the Dynamic Resource Exchange (DRE), the supply-demand framework at the heart of the kernel. The key agent-DRE interaction mechanisms are described, which enable complex entity interaction through the use of physics and socio-economic models. The translation of an exchange instance to a variant of the Multicommodity Transportation Problem, which can be solved feasibly or optimally, follows. An extensive investigation of solution performance and fidelity is then presented. Finally, recommendations for future users of Cyclus and the DRE are provided.

Book VISION

    Book Details:
  • Author :
  • Publisher :
  • Release : 2009
  • ISBN :
  • Pages : pages

Download or read book VISION written by and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The nuclear fuel cycle is a very complex system that includes considerable dynamic complexity as well as detail complexity. In the nuclear power realm, there are experts and considerable research and development in nuclear fuel development, separations technology, reactor physics and waste management. What is lacking is an overall understanding of the entire nuclear fuel cycle and how the deployment of new fuel cycle technologies affects the overall performance of the fuel cycle. The Advanced Fuel Cycle Initiative's systems analysis group is developing a dynamic simulation model, VISION, to capture the relationships, timing and delays in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works and can transition as technologies are changed. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model and some examples of how to use VISION.

Book A Hybrid Global Surrogate Modeling Software for Nuclear Reactor Cross Section Estimation

Download or read book A Hybrid Global Surrogate Modeling Software for Nuclear Reactor Cross Section Estimation written by Cem Bagdatlioglu and published by . This book was released on 2017 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nuclear fuel cycle (NFC) simulators track the amount and composition of materials as they move through facilities such as mines, fuel fabrication plants, and nuclear reactors. A major task of a NFC simulator is to calculate the evolution of compositions of batches of nuclear materials as they are transmuted in reactors, decay, and are blended with other batches to create reactor fuel or be reprocessed or disposed. Codes used for NFC simulation that utilize intermediate data saved in databases which are calculated ahead of time are attractive since their fidelity can be improved by investing more resources in expanding their databases. Shifting the computational work ahead of the reactor simulation like this allows the fidelity to be improved without sacrificing runtime computational cost. This dissertation describes a method that attempts to maximize the fidelity increase per unit time invested during this precomputation step. Unlike previous work in the reactor simulation field, this methodology does not limit the number and type of runtime simulation inputs. NUDGE (NUclear Database GEneration software) is an implementation of this methodology. The methodology has two main steps where new data is added to databases. First is exploration, where inputs to the database are selected to be as uniformly distributed as possible within the problem input domain. Second step is exploitation, where output information is utilized to inform the selection of the next point to run. An improvement to exploitation, named Voronoi Cell Adjustment, is described in this dissertation and implemented in NUDGE. This improvement has been shown to benefit the average fidelity increase during database building. A study of the scaling of the methodology, a comparison of error metrics, and an exploration of optimal values for several key parameters in the methodology are presented. NUDGE has also been used to create a global surrogate model of a NFC simulation software (named XSgen). This model shows better performance compared to models generated by other established methods under equal constraints.

Book Modeling the Nuclear Fuel Cycle

Download or read book Modeling the Nuclear Fuel Cycle written by Jacob J. Jacobson and published by . This book was released on 2005 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The Advanced Fuel Cycle Initiative is developing a system dynamics model as part of their broad systems analysis of future nuclear energy in the United States. The model will be used to analyze and compare various proposed technology deployment scenarios. The model will also give a better understanding of the linkages between the various components of the nuclear fuel cycle that includes uranium resources, reactor number and mix, nuclear fuel type and waste management. Each of these components is tightly connected to the nuclear fuel cycle but usually analyzed in isolation of the other parts. This model will attempt to bridge these components into a single model for analysis. This work is part of a multi-national laboratory effort between Argonne National Laboratory, Idaho National Laboratory and United States Department of Energy. This paper summarizes the basics of the system dynamics model and looks at some results from the model.

Book Energy  Nuclear

Download or read book Energy Nuclear written by Michael Ratner and published by The Capitol Net Inc. This book was released on with total page 659 pages. Available in PDF, EPUB and Kindle. Book excerpt: Part of the government series on energy, from TheCapitol.Net, this text discusses the nuclear energy issues facing Congress including federal incentives for new commercial reactors, radioactive waste management policy, research and development priorities, power plant safety and regulation, nuclear weapons proliferation, and security against terrorist attacks.

Book Science Based Integrated Approach to Advanced Nuclear Fuel Development   Vision  Approach  and Overview

Download or read book Science Based Integrated Approach to Advanced Nuclear Fuel Development Vision Approach and Overview written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Rcactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems is critical. In order to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. The purpose of this paper is to identify the modeling and simulation approach in order to deliver predictive tools for advanced fuels development. The coordination between experimental nuclear fuel design, development technical experts, and computational fuel modeling and simulation technical experts is a critical aspect of the approach and naturally leads to an integrated, goal-oriented science-based R & D approach and strengthens both the experimental and computational efforts. The Advanced Fuels Campaign (AFC) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Integrated Performance and Safety Code (IPSC) are working together to determine experimental data and modeling needs. The primary objective of the NEAMS fuels IPSC project is to deliver a coupled, three-dimensional, predictive computational platform for modeling the fabrication and both normal and abnormal operation of nuclear fuel pins and assemblies, applicable to both existing and future reactor fuel designs. The science based program is pursuing the development of an integrated multi-scale and multi-physics modeling and simulation platform for nuclear fuels. This overview paper discusses the vision, goals and approaches how to develop and implement the new approach.

Book Novel Methods for Generalizing Nuclear Fuel Cycle Design  and Fuel Burnup Modeling

Download or read book Novel Methods for Generalizing Nuclear Fuel Cycle Design and Fuel Burnup Modeling written by Robert Ryan Flanagan and published by . This book was released on 2015 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: The large number of reactor designs and concepts in existence open up a vast array of nuclear fuel cycle strategies. u. These different reactor types require unique supporting systems from raw material extraction and handling to waste management. Any system designed to model nuclear energy should therefore have methods that are capability of representing a large number of unique fuel cycles. This work examines a user interface designed to generalize the design of nuclear fuel cycles. This software, known as CycIC, allows users to interact graphically with a fuel cycle simulator (Cyclus). In this work, the capabilities of CycIC were improved through two rounds of rigorous user experience testing. These tests were used as a basis for implementing improvements to the software. Two views inside the software were improved to allow for users to interact with the software more intuitively, and features that provide help to the users were added to improve understanding of fuel cycles and Cyclus. Additionally, this work expands the capabilities of a reactor modeling software (known as Bright-lite) which uses the fluence based neutron balance approach to determine burnup, criticality, and transmutation matrixes for nuclear reactors to augment its modeling of the broadest range of fuel cycle strategies. Specifically, a multi-dimensional interpolation method was implemented to enable reactors to be characterized by sets of cross section libraries which potentially depend on a large number of reactor characteristics. The accuracy of this interpolation method is demonstrated for a number of parameters for light water reactors, and techniques for using this interpolation method to automatically generate reactor libraries for Bright-lite are demonstrated. This research also generalizes the ability of the Bright-lite to blend multiple streams of nuclear fuel while still maintaining constraints. This system is demonstrated for continuous recycle nuclear fuel cycles utilizing light water and fast spectrum reactors. The results show that Bright-lite is capable of blending fuel to reach several targets using up to three different input streams.

Book Interim Report on Fuel Cycle Neutronics Code Development

Download or read book Interim Report on Fuel Cycle Neutronics Code Development written by and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: As part of the Global Nuclear Energy Partnership (GNEP), a fast reactor simulation program was launched in April 2007 to develop a suite of modern simulation tools specifically for the analysis and design of sodium cooled fast reactors. The general goal of the new suite of codes is to reduce the uncertainties and biases in the various areas of reactor design activities by enhanced prediction capabilities. Under this fast reactor simulation program, a high-fidelity deterministic neutron transport code named UNIC is being developed. The final objective is to produce an integrated, advanced neutronics code that allows the high fidelity description of a nuclear reactor and simplifies the multi-step design process by direct coupling with thermal-hydraulics and structural mechanics calculations. Currently there are three solvers for the neutron transport code incorporated in UNIC: PN2ND, SN2ND, and MOCFE. PN2ND is based on a second-order even-parity spherical harmonics discretization of the transport equation and its primary target area of use is the existing homogenization approaches that are prevalent in reactor physics. MOCFE is based upon the method of characteristics applied to an unstructured finite element mesh and its primary target area of use is the fine grained nature of the explicit geometrical problems which is the long term goal of this project. SN2ND is based on a second-order, even-parity discrete ordinates discretization of the transport equation and its primary target area is the modeling transition region between the PN2ND and MOCFE solvers. The major development goal in fiscal year 2008 for the MOCFE solver was to include a two-dimensional capability that is scalable to hundreds of processors. The short term goal of this solver is to solve two-dimensional representations of reactor systems such that the energy and spatial self-shielding are accounted for and reliable cross sections can be generated for the homogeneous calculations. In this report we present good results for an OECD benchmark obtained using the new two-dimensional capability of the MOCFE solver. Additional work on the MOCFE solver is focused on studying the current parallelization algorithms that can be applied to both the two- and three-dimensional implementations such that they are scalable to thousands of processors. The initial research into this topic indicates that, as expected, the current parallelization scheme is not sufficiently scalable for the detailed reactor geometry that it is intended for. As a consequence, we are starting the investigative research to determine the alternatives that are applicable for massively parallel machines. The major development goal in fiscal year 2008 for the PN2ND and SN2ND solvers was to introduce parallelism by angle and energy. The motivation for this is two-fold: (1) reduce the memory burden by picking a simpler preconditioner with reduced matrix storage and (2) improve parallel performance by solving the angular subsystems of the within group equation simultaneously. The solver development in FY2007 focused on using PETSc to solve the within group equation where only spatial parallelization was utilized. Because most homogeneous problems required relatively few spatial degrees of freedom (tens of thousands) the only way to improve the parallelism was to spread the angular moment subsystems across the parallel system. While the coding has been put into place for parallelization by space, angle, and group, we have not optimized any of the solvers and therefore do not give an assessment of the achievement of this work in this report. The immediate task to be completed is to implement and validate Tchebychev acceleration of the fission source iteration algorithm (inverse power method in this work) and optimize both the PN2ND and SN2ND solvers. We further intend to extend the applicability of the UNIC code by adding a first-order discrete ordinates solver termed SN1ST. Upon completion of this work, all memory usage problems are to be identified and studied in the solvers with the intent of making the new version of an exportable production code in either FY2008 or FY2009. This report covers the status of these tasks and discusses the work yet to be completed.

Book Application of Data driven Methods in Nuclear Fuel Performance Analysis

Download or read book Application of Data driven Methods in Nuclear Fuel Performance Analysis written by Yifeng Che and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accurately predicting the behavior of nuclear fuel performance is essential for the safe and economic operation of nuclear reactors. Computer codes of different fidelities have been developed over past decades to simulate the behavior of nuclear fuels, such as the multi-dimensional, parallel, finite element-based code BISON, and the NRC-auditing code FRAPCON. Multiple areas of research remain to be addressed in fuel performance while physics-based approaches often reach their limits. Studies to be presented in this thesis therefore revolve around applying data-driven methods to address these issues. First, discrepancies always exist between code predictions and real-world responses, thus uncertainties must be quantified for the code predictions for benefit of decision making, operation safety and design optimization. Systematic validation and verification are performed for BISON first, followed by a holistic sensitivity analysis (SA) framework built upon a complete set of uncertain input parameters. The number of uncertain input parameters can be effectively reduced based on the obtained qualitative importance ranking, benefiting the subsequent uncertainty quantification (UQ). To enhance the predictability, a novel Bayesian inference framework is introduced to efficiently calibrate the expensive high fidelity tools, possibly without resorting to approximate surrogate methods. The calibrated prediction aligns better with experimental observations, and is subject to significantly reduced uncertainty. Second, while full-core monitoring of fuel behaviors can provide the most realistic assessment of safety margins, its computational cost for use in design and operation optimization is prohibitive. Machine learning (ML) methods were used to construct fast-running full-core surrogates, which achieves a runtime acceleration of more than 10,000 (1,000) times compared to FRAPCON for the standard (high burnup) PWR cores, allowing for direct coupling of full-core fuel response into core design optimization in the future. Then for purpose of full-core PCI monitoring which requires BISON as the high-fidelity simulation tool, a physics-informed multi-fidelity ML framework is introduced to significantly reduce the number of necessary code runs. Finally, deep learning models are trained to predict the spatiotemporal distribution of the cladding hoop stress. The proposed data-driven methods for the selected applications enlightens the nuclear community on practical pathways to realize meaningful improvements in fuel performance assessment.