EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Novel Solvent Injection and Conformance Control Technologies for Fractured Viscous Oil Reservoirs

Download or read book Novel Solvent Injection and Conformance Control Technologies for Fractured Viscous Oil Reservoirs written by Kelli Margaret Rankin and published by . This book was released on 2013 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fractured viscous oil resources hold great potential for continued oil production growth globally. However, many of these resources are not accessible with current commercial technologies using steam injection which limits operations to high temperatures. Several steam-solvent processes have been proposed to decrease steam usage, but they still require operating temperatures too high for many projects. There is a need for a low temperature injection strategy alternative for viscous oil production. This dissertation discusses scoping experimental work for a low temperature solvent injection strategy targeting fractured systems. The strategy combines three production mechanisms -- gas-oil gravity drainage, liquid extraction, and film gravity drainage. During the initial heating period when the injected solvent is in the liquid phase, liquid extraction occurs. When the solvent is in the vapor phase, solvent-enhanced film gravity drainage occurs. A preliminary simulation of the experiments was developed to study the impact of parameter uncertainty on the model performance. Additional work on reducing uncertainty for key parameters controlling the two solvent production mechanisms will be necessary. In a natural fracture network, the solvent would not be injected uniformly throughout the reservoir. Preferential injection into the higher conductivity fracture areas would result in early breakthrough leaving unswept areas of high oil saturation. Conformance control would be necessary to divert subsequent solvent injection into the unswept zones. A variety of techniques, including polymer and silica gel treatments, have been designed to block flow through the swept zones, but all involve initiating gelation prior to injection. This dissertation also looks at a strategy that uses the salinity gradient between the injected silica nanoparticle dispersion and the in-situ formation water to trigger gelation. First, the equilibrium phase behavior of silica dispersions as a function of sodium chloride and nanoparticle concentration and temperature was determined. The dispersions exhibited three phases -- a clear, stable dispersion; gel; and a viscous, unstable dispersion. The gelation time was found to decrease exponentially as a function of silica concentration, salinity, and temperature. During core flood tests under matrix and fracture injection, the in-situ formed gels were shown to provide sufficient conductivity reduction even at low nanoparticle concentration.

Book Chemical Enhanced Oil Recovery

Download or read book Chemical Enhanced Oil Recovery written by Patrizio Raffa and published by Walter de Gruyter GmbH & Co KG. This book was released on 2019-07-22 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims at presenting, describing, and summarizing the latest advances in polymer flooding regarding the chemical synthesis of the EOR agents and the numerical simulation of compositional models in porous media, including a description of the possible applications of nanotechnology acting as a booster of traditional chemical EOR processes. A large part of the world economy depends nowadays on non-renewable energy sources, most of them of fossil origin. Though the search for and the development of newer, greener, and more sustainable sources have been going on for the last decades, humanity is still fossil-fuel dependent. Primary and secondary oil recovery techniques merely produce up to a half of the Original Oil In Place. Enhanced Oil Recovery (EOR) processes are aimed at further increasing this value. Among these, chemical EOR techniques (including polymer flooding) present a great potential in low- and medium-viscosity oilfields. • Describes recent advances in chemical enhanced oil recovery. • Contains detailed description of polymer flooding and nanotechnology as promising boosting tools for EOR. • Includes both experimental and theoretical studies. About the Authors Patrizio Raffa is Assistant Professor at the University of Groningen. He focuses on design and synthesis of new polymeric materials optimized for industrial applications such as EOR, coatings and smart materials. He (co)authored about 40 articles in peer reviewed journals. Pablo Druetta works as lecturer at the University of Groningen (RUG) and as engineering consultant. He received his Ph.D. from RUG in 2018 and has been teaching at a graduate level for 15 years. His research focus lies on computational fluid dynamics (CFD).

Book Sweep Efficiency for Solvent Injection Into Heavy Oil Reservoirs at Grain scale Displacement of Extremely Viscous Fluid

Download or read book Sweep Efficiency for Solvent Injection Into Heavy Oil Reservoirs at Grain scale Displacement of Extremely Viscous Fluid written by Okhtay Taghizadeh Dizaj Cheraghi and published by . This book was released on 2007 with total page 618 pages. Available in PDF, EPUB and Kindle. Book excerpt: The movement of low viscosity fluid through a porous medium containing extremely viscous fluid is emerging as an important phenomenon in several petroleum engineering applications. These include the recovery of heavy oil by solvent injection, the preferential reduction of water flow using polymer gels, and the enhancement of acid fracturing treatments. The displacement of one fluid from a porous medium by a second, immiscible fluid has been extensively studied in two cases: when capillary forces are dominant, and when viscous forces are comparable to capillary forces. This dissertation research examines a third case: when viscous forces are dominant. The viscosity of the fluid initially present in the porous medium is four or more orders of magnitude greater than the viscosity of the displacing fluid. Consequently, the displacement through an individual pore will be dictated by the hydrodynamic forces required to move the high viscosity fluid. However, very little is known about grain-scale behavior of such displacements. The research will develop a mathematical model of the viscosity-dominated displacement in a network of conduits. By neglecting pressure drop within the low viscosity fluid, the model will treat the displacement as a moving boundary problem. The high viscosity fluid will be assumed Newtonian and will move in response to the pressure gradient imposed via the low viscosity fluid. The movement can be treated as pseudo-steady state flow of the highviscosity fluid. The flow field will be updated whenever the low viscosity fluid advances into a pore previously occupied by high-viscosity fluid. Swept volume will be calculated in each run for comparison and further investigation. We will use classical methods for direct and iterative solutions of large, sparse linear systems to compute these steady states. Key practical insights to be obtained from the model are the nature of the displacement and effects of geometry and hydraulic conductivities on the sweep efficiency. The model will form the basis for examining additional physical processes, notably mass transfer between fluids, and the possibility that fingering of the low viscosity fluid occurs within individual pore throats.

Book Enhanced Oil Recovery Field Case Studies

Download or read book Enhanced Oil Recovery Field Case Studies written by James J.Sheng and published by Gulf Professional Publishing. This book was released on 2013-04-10 with total page 710 pages. Available in PDF, EPUB and Kindle. Book excerpt: Enhanced Oil Recovery Field Case Studies bridges the gap between theory and practice in a range of real-world EOR settings. Areas covered include steam and polymer flooding, use of foam, in situ combustion, microorganisms, "smart water"-based EOR in carbonates and sandstones, and many more. Oil industry professionals know that the key to a successful enhanced oil recovery project lies in anticipating the differences between plans and the realities found in the field. This book aids that effort, providing valuable case studies from more than 250 EOR pilot and field applications in a variety of oil fields. The case studies cover practical problems, underlying theoretical and modeling methods, operational parameters, solutions and sensitivity studies, and performance optimization strategies, benefitting academicians and oil company practitioners alike. Strikes an ideal balance between theory and practice Focuses on practical problems, underlying theoretical and modeling methods, and operational parameters Designed for technical professionals, covering the fundamental as well as the advanced aspects of EOR

Book Mobility Control of Gas Injection in Highly Heterogeneous and Naturally Fractured Reservoirs

Download or read book Mobility Control of Gas Injection in Highly Heterogeneous and Naturally Fractured Reservoirs written by Jose Sergio de Araujo Cavalcante Filho and published by . This book was released on 2016 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since a significant portion of the world’s oil reserves resides in naturally fractured reservoirs (NFR), it is important to maximize oil production from these reservoirs. Mobility control EOR techniques, such as water alternating gas (WAG) and foam injection, may be used in NFRs to improve oil recovery. Foam injection may be modeled by empirical or mechanistic models, the latter being capable of representing foam generation and coalescence effects. Numerical models are needed to evaluate EOR techniques in NFR. The Embedded Discrete Fracture Model (EDFM) is capable of representing conductive faults or fractures and describing NFR and unconventional reservoirs as a triple porosity medium (hydraulic fractures, natural fractures, and matrix). This work aims at developing a general EDFM framework to allow the evaluation of different mobility control EOR methods in NFR. The mobility control EOR methods evaluated were the WAG and continuous foam injection. The formulation used to evaluate mobility control by foam injection in NFR was the population balance assuming local equilibrium and the P*c models. Nanoparticle transport models (Two Site and Two Rate models) were implemented and validated to allow simulation of nanoparticle stabilized foam injection. An EDFM preprocessor was further developed and validated against the in-house fully implicit simulator, unstructured grid models from the literature and fine-grid models using a commercial simulator. Simulation run time was reduced by applying a porosity cut-off in the fracture cells assuming constant fracture conductivity. Validation case studies included multi-fractured wells producing through depletion and a 2D quarter five-spot production scheme (water and miscible gas injection) in NFR. We obtained a good agreement between EDFM, unstructured grid, and fine-grid models. Application case studies included 3D models under water, miscible gas and WAG injection, which confirmed the efficiency of the EDFM in modeling complex fracture networks. We used the EDFM to simulate multilateral well stimulation and we performed an automated history matching of the production data of a field test. The foam model and the nanoparticle transport models were validated against experimental data from the literature. It is concluded that the effect of fractures on hydrocarbon production depends on fracture network connectivity, which may be modeled using the EDFM preprocessor. Simulation results using mobility control EOR methods show considerable improvements in oil recovery due to a postponement in gas breakthrough.

Book Factors Affecting Injection Well Performance and Fracture Growth in Waterflooded Reservoirs

Download or read book Factors Affecting Injection Well Performance and Fracture Growth in Waterflooded Reservoirs written by Jongsoo Hwang and published by . This book was released on 2014 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: Waterflooding involves the injection of water to displace oil from oil and gas reservoirs. Well over 80% of oil reservoirs will undergo waterflooding at some point in their life. It is, therefore, important to understand some key aspects of this process that have hitherto not been well studied. This dissertation investigates the following aspects of waterflooding: (i) the filtration of solids and oil-in-water emulsions in fractured and unfractured injection wells, (ii) the generation and filtration of oil-in-water (O/W) emulsion droplets in the near-well region or in the fracture, (iii) the height-growth and containment of injection-induced fractures, and (iv) the stress reorientation induced by water injection when waterflooding reservoirs. These aspects are investigated as separate physical phenomena, but their impacts are integrated using the platform of a comprehensive waterflooding injection well model. The first phenomenon investigated is filtration in frac-packed injectors. During long-term water injection, solid particles in the injection water may deposit in the proppant pack of frac-packed injectors. Researchers have not fully understood whether particles will travel without plugging the frac-packs or deposit in the near-well area under the high-velocity flow conditions in the proppants. Filtration behavior under frac-pack flow conditions is the most important factor that determines overall injector performance. In this dissertation the filtration of injected solids under these conditions was experimentally studied, and the effect of frac-pack filtration on the injector performance was predicted. The flow of dilute oil droplets in a porous medium under near-well conditions was experimentally investigated. When the porous medium has a residual oil saturation, oil droplets can be generated by viscous forces overcoming entrapping capillary forces. The generated oil droplets will subsequently participate in filtration processes along with injected oil droplets. If this occurs in the near-injector area, the injectivity can severely decline and this may require expensive remediation processes. In this study, prediction of O/W emulsion flow was improved by experimental observations of the rates of generation and filtration of oil droplets. In a larger scale problem, a 3-dimensional model of water-injection-induced fracture was developed to predict the fracture height growth. If a fracture breaches the bounding layers, the sweep efficiency can be significantly impaired and it could have severe environmental consequences (such as contamination of shallower aquifers or the seabed). During long-term water injection, fracture growth can only be simulated properly when the filtration near fractures, thermo-elastic stress changes and reservoir fluid flow behavior are all concurrently calculated. Based on this new model, the impact of reservoir stress conditions, mechanical properties, and injection-water quality on fracture growth was studied. On a reservoir-scale, the stress reorientation caused by injection-production activities during waterflooding was investigated. A new finite-volume multi-phase reservoir simulation with poro- and thermo-elasticity was developed. This model was applied to various waterflooding well patterns, such as five-, nine-spot, line-drive and horizontal well pairs, and the critical geomechanical responses by injection-production activities during waterflooding operations were analyzed. The model can be used to predict the direction of induced fractures, design infill well locations and configurations and optimize the reservoir sweep. Through the use of both experimental observations and numerical models this work has elucidated various physical phenomena affecting fracture growth and injection-well performance. The findings in this dissertation provide critical data and models that help us to more confidently specify injection water quality, the design of pumping and water treatment facilities, and the optimization of well planning. The models developed in this work can be used to substantially improve the predictions of injection well performance and improve reservoir oil recovery by waterflooding.

Book Hydrogels

    Book Details:
  • Author : Sajjad Haider
  • Publisher : BoD – Books on Demand
  • Release : 2018-08-01
  • ISBN : 1789233682
  • Pages : 212 pages

Download or read book Hydrogels written by Sajjad Haider and published by BoD – Books on Demand. This book was released on 2018-08-01 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new important book is a collection of research and review articles from different parts of the world discussing the dynamic and vibrant field of hydrogels. The articles are linking new findings and critically reviewing the fundamental concepts and principles that are making the base for innovation. Each chapter discusses the potential of hydrogels in diverse areas. These areas include tissue engineering, implants, controlled drug release, and oil reserve treatment. The book is offering an up-to-date knowledge of hydrogels to experienced as well as new researchers.

Book Petroleum Abstracts  Literature and Patents

Download or read book Petroleum Abstracts Literature and Patents written by and published by . This book was released on 1985 with total page 1486 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Enhanced Oil Recovery in Shale and Tight Reservoirs

Download or read book Enhanced Oil Recovery in Shale and Tight Reservoirs written by James J.Sheng and published by Gulf Professional Publishing. This book was released on 2019-11-07 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: Oil Recovery in Shale and Tight Reservoirs delivers a current, state-of-the-art resource for engineers trying to manage unconventional hydrocarbon resources. Going beyond the traditional EOR methods, this book helps readers solve key challenges on the proper methods, technologies and options available. Engineers and researchers will find a systematic list of methods and applications, including gas and water injection, methods to improve liquid recovery, as well as spontaneous and forced imbibition. Rounding out with additional methods, such as air foam drive and energized fluids, this book gives engineers the knowledge they need to tackle the most complex oil and gas assets. Helps readers understand the methods and mechanisms for enhanced oil recovery technology, specifically for shale and tight oil reservoirs Includes available EOR methods, along with recent practical case studies that cover topics like fracturing fluid flow back Teaches additional methods, such as soaking after fracturing, thermal recovery and microbial EOR

Book Simulation Study of Wettability Alteration by Deep Eutectic Solvent Injection as an EOR Agent for Heavy Oil Reservoirs

Download or read book Simulation Study of Wettability Alteration by Deep Eutectic Solvent Injection as an EOR Agent for Heavy Oil Reservoirs written by Omnia Sulaiman Al-Rujaibiyah and published by . This book was released on 2015 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Imbibition of Anionic Surfactant Solution Into Oil wet Matrix in Fractured Reservoirs

Download or read book Imbibition of Anionic Surfactant Solution Into Oil wet Matrix in Fractured Reservoirs written by Mohammad Mirzaei Galeh Kalaei and published by . This book was released on 2013 with total page 656 pages. Available in PDF, EPUB and Kindle. Book excerpt: Water-flooding in water-wet fractured reservoirs can recover significant amounts of oil through capillary driven imbibition. Unfortunately, many of the fractured reservoirs are mixed-wet/oil-wet and water-flooding leads to poor recovery as the capillary forces hinder imbibition. Surfactant injection and immiscible gas injection are two possible processes to improve recovery from fractured oil-wet reservoirs. In both these EOR methods, the gravity is the main driving force for oil recovery. Surfactant has been recommended and shown a great potential to improve oil recovery from oil-wet cores in the laboratory. To scale the results to field applications, the physics controlling the imbibition of surfactant solution and the scaling rules needs to be understood. The standard experiments for testing imbibition of surfactant solution involves an imbibition cell, where the core is placed in the surfactant solution and the recovery is measured versus time. Although these experiments prove the effectiveness of surfactants, little insight into the physics of the problem is achieved. This dissertation provides new core scale and pore scale information on imbibition of anionic surfactant solution into oil-wet porous media. In core scale, surfactant flooding into oil-wet fractured cores is performed and the imbibition of the surfactant solution into the core is monitored using X-ray computerized tomography(CT). The surfactant solution used is a mixture of several different surfactants and a co-solvent tailored to produce ultra-low interfacial tension (IFT) for the specific oil used in the study. From the CT images during surfactant flooding, the average penetration depth and the water saturation versus height and time is calculated. Cores of various sizes are used to better understand the effect of block dimension on imbibition behavior. The experimental results show that the brine injection into fractured oil-wet core only recovers oil present in the fracture; When the surfactant solution is injected, the CT images show the imbibition of surfactant solution into the matrix and increase in oil recovery. The surfactant solution imbibes as a front. The imbibition takes place both from the bottom and the sides of the core. The highest imbibition is observed close to the bottom of the core. The imbibition from the side decreases with height and lowest imbibition is observed close to the top of the core. Experiments with cores of different sizes show that increase in either the length or the diameter of the core causes decrease in the fractional recovery rate (%OOIP). Numerical simulation is also used to determine the physics that controls the imbibition profiles. %The numerical simulations show that the relative permeability curves strongly affect the imbibition profiles and should be well understood to accurately model the process. Both experimental and numerical simulation results imply that the gravity is the main driving force for the imbibition process. The traditional scaling group for gravity dominated imbibition only includes the length of the core to upscale the recovery for cores of different sizes. However based on the measurements and simulation results from this study, a new scaling group is proposed that includes both the diameter and the length of the core. It is shown that the new scaling group scales the recovery curves from this study better than the traditional scaling group. In field scale, the new scaling group predicts that the recovery from fractured oil-wet reservoirs by surfactant injection scales by both the vertical and horizontal fracture spacing. In addition to core scale experiments, capillary tube experiments are also performed. In these experiments, the displacement of oil by anionic surfactant solutions in oil-wet horizontal capillary tubes is studied. The position of the oil-aqueous phase interface is recorded with time. Several experimental parameters including the capillary tube radius and surfactant solution viscosity are varied to study their effect on the interface speed. Two different models are used to predict the oil-aqueous phase interface position with time. In the first model, it is assumed that the IFT is constant and ultra-low throughout the experiments. The second model involves change of wettability and IFT by adsorption of surfactant molecules to the oil-water interface and the solid surface. Comparing the predictions to the experimental results, it is observed that the second model provides a better match, especially for smaller capillary tubes. The model is then used to predict the imbibition rate for very small capillary tubes, which have equivalent permeability close to oil reservoirs. The results show that the oil displacement rate is limited by the rate of diffusion of surfactant molecules to the interface. In addition to surfactant flooding, immiscible gas injection can also improve recovery from fractured oil-wet reservoirs. In this process, the injected gas drains the oil in the matrix by gravity forces. Gravity drainage of oil with gas is an efficient recovery method in strongly water-wet reservoirs and yields very low residual oil saturations. However, many of the oil-producing fractured reservoirs are not strongly water-wet. Thus, predicting the profiles and ultimate recovery for mixed and oil-wet media is essential to design and optimization of improved recovery methods based on three-phase gravity drainage. In this dissertation, we provide the results from two- and three-phase gravity drainage experiments in sand-packed columns with varying wettability. The results show that the residual oil saturation from three-phase gravity drainage increases with increase in the fraction of oil-wet sand. A simple method is proposed for predicting the three-phase equilibrium saturation profiles as a function of wettability. In each case, the three-phase results were compared to the predictions from two-phase results of the same wettability. It is found that the gas/oil and oil/water transition levels can be predicted from pressure continuity arguments and the two-phase data. The predictions of three-phase saturations work well for the water-wet media, but become progressively worse with increasing oil-wet fraction.

Book An Improved Vapour Solvent Injection Technique for Enhanced Heavy Oil Recovery

Download or read book An Improved Vapour Solvent Injection Technique for Enhanced Heavy Oil Recovery written by Tao Jiang and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Chemical Enhanced Oil Recovery  cEOR

Download or read book Chemical Enhanced Oil Recovery cEOR written by Laura Romero-Zerón and published by BoD – Books on Demand. This book was released on 2016-10-19 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Commercial application of chemical enhanced oil recovery (cEOR) processes is expected to grow significantly over the next decade. Thus, Chemical Enhanced Oil Recovery (cEOR): A Practical Overview offers key knowledge and understanding of cEOR processes using an evidence-based approach intended for a broad audience ranging from field operators, researchers, to reservoir engineers dealing with the development and planning of cEOR field applications. This book is structured into three sections; the first section surveys overall EOR processes. The second section focuses on cEOR processes, while the final section describes the electrorheology technology. These sections are presented using a practical and realistic approach tailored for readers looking to improve their knowledge and understanding of cEOR processes in a nutshell.

Book Petroleum Abstracts

Download or read book Petroleum Abstracts written by and published by . This book was released on 1992 with total page 1716 pages. Available in PDF, EPUB and Kindle. Book excerpt: