Download or read book Numerical Methods for Large Eigenvalue Problems written by Yousef Saad and published by SIAM. This book was released on 2011-01-01 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This revised edition discusses numerical methods for computing eigenvalues and eigenvectors of large sparse matrices. It provides an in-depth view of the numerical methods that are applicable for solving matrix eigenvalue problems that arise in various engineering and scientific applications. Each chapter was updated by shortening or deleting outdated topics, adding topics of more recent interest, and adapting the Notes and References section. Significant changes have been made to Chapters 6 through 8, which describe algorithms and their implementations and now include topics such as the implicit restart techniques, the Jacobi-Davidson method, and automatic multilevel substructuring.
Download or read book High Dimensional Probability written by Roman Vershynin and published by Cambridge University Press. This book was released on 2018-09-27 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
Download or read book Numerical Methods for General and Structured Eigenvalue Problems written by Daniel Kressner and published by Springer Science & Business Media. This book was released on 2006-01-20 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about computing eigenvalues, eigenvectors, and invariant subspaces of matrices. Treatment includes generalized and structured eigenvalue problems and all vital aspects of eigenvalue computations. A unique feature is the detailed treatment of structured eigenvalue problems, providing insight on accuracy and efficiency gains to be expected from algorithms that take the structure of a matrix into account.
Download or read book Computational Methods Seismic Protection Hybrid Testing and Resilience in Earthquake Engineering written by Gian Paolo Cimellaro and published by Springer. This book was released on 2014-09-16 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is a tribute to the research contribution of Professor Andrei Reinhorn in the field of earthquake engineering. It covers all the aspects connected to earthquake engineering starting from computational methods, hybrid testing and control, resilience and seismic protection which have been the main research topics in the field of earthquake engineering in the last 30 years. These were all investigated by Prof. Reinhorn throughout his career. The book provides the most recent advancements in these four different fields, including contributions coming from six different countries giving an international outlook to the topics.
Download or read book Computational Mechanics written by Zhenhan Yao and published by Springer Science & Business Media. This book was released on 2009-03-24 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Mechanics is the proceedings of the International Symposium on Computational Mechanics, ISCM 2007. This conference is the first of a series created by a group of prominent scholars from the Mainland of China, Hong Kong, Taiwan, and overseas Chinese, who are very active in the field. The book includes 22 full papers of plenary and semi-plenary lectures and approximately 150 one-page summaries.
Download or read book Sparse Grids and Applications Stuttgart 2014 written by Jochen Garcke and published by Springer. This book was released on 2016-03-16 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume of LNCSE is a collection of the papers from the proceedings of the third workshop on sparse grids and applications. Sparse grids are a popular approach for the numerical treatment of high-dimensional problems. Where classical numerical discretization schemes fail in more than three or four dimensions, sparse grids, in their different guises, are frequently the method of choice, be it spatially adaptive in the hierarchical basis or via the dimensionally adaptive combination technique. Demonstrating once again the importance of this numerical discretization scheme, the selected articles present recent advances on the numerical analysis of sparse grids as well as efficient data structures. The book also discusses a range of applications, including uncertainty quantification and plasma physics.
Download or read book Computational Methods for Physicists written by Simon Sirca and published by Springer Science & Business Media. This book was released on 2012-12-17 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book helps advanced undergraduate, graduate and postdoctoral students in their daily work by offering them a compendium of numerical methods. The choice of methods pays significant attention to error estimates, stability and convergence issues as well as to the ways to optimize program execution speeds. Many examples are given throughout the chapters, and each chapter is followed by at least a handful of more comprehensive problems which may be dealt with, for example, on a weekly basis in a one- or two-semester course. In these end-of-chapter problems the physics background is pronounced, and the main text preceding them is intended as an introduction or as a later reference. Less stress is given to the explanation of individual algorithms. It is tried to induce in the reader an own independent thinking and a certain amount of scepticism and scrutiny instead of blindly following readily available commercial tools.
Download or read book Spectral Algorithms written by Ravindran Kannan and published by Now Publishers Inc. This book was released on 2009 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spectral methods refer to the use of eigenvalues, eigenvectors, singular values and singular vectors. They are widely used in Engineering, Applied Mathematics and Statistics. More recently, spectral methods have found numerous applications in Computer Science to "discrete" as well as "continuous" problems. Spectral Algorithms describes modern applications of spectral methods, and novel algorithms for estimating spectral parameters. The first part of the book presents applications of spectral methods to problems from a variety of topics including combinatorial optimization, learning and clustering. The second part of the book is motivated by efficiency considerations. A feature of many modern applications is the massive amount of input data. While sophisticated algorithms for matrix computations have been developed over a century, a more recent development is algorithms based on "sampling on the fly" from massive matrices. Good estimates of singular values and low rank approximations of the whole matrix can be provably derived from a sample. The main emphasis in the second part of the book is to present these sampling methods with rigorous error bounds. It also presents recent extensions of spectral methods from matrices to tensors and their applications to some combinatorial optimization problems.
Download or read book Numerical Algorithms written by Justin Solomon and published by CRC Press. This book was released on 2015-06-24 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig
Download or read book High Precision Methods in Eigenvalue Problems and Their Applications written by Leonid D. Akulenko and published by CRC Press. This book was released on 2004-10-15 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a survey of analytical, asymptotic, numerical, and combined methods of solving eigenvalue problems. It considers the new method of accelerated convergence for solving problems of the Sturm-Liouville type as well as boundary-value problems with boundary conditions of the first, second, and third kind. The authors also present high
Download or read book Large Scale Eigenvalue Problems written by J. Cullum and published by Elsevier. This book was released on 1986-01-01 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: Results of research into large scale eigenvalue problems are presented in this volume. The papers fall into four principal categories:novel algorithms for solving large eigenvalue problems, novel computer architectures, computationally-relevant theoretical analyses, and problems where large scale eigenelement computations have provided new insight.
Download or read book Foundations of Data Science written by Avrim Blum and published by Cambridge University Press. This book was released on 2020-01-23 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.
Download or read book Practical Numerical Methods with C written by Jack Xu and published by UniCAD. This book was released on 2019 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of this book builds all the code example within a single project by incorporating new advancements in C# .NET technology and open-source math libraries. It also uses C# Interactive Window to test numerical computations without compiling or running the complete project code. The second edition includes three new chapters, including "Plotting", Fourier Analysis" and "Math Expression Parser". As in the first edition, this book presents an in-depth exposition of the various numerical methods used in real-world scientific and engineering computations. It emphasizes the practical aspects of C# numerical methods and mathematical functions programming, and discusses various techniques in details to enable you to implement these numerical methods in your .NET application. Ideal for scientists, engineers, and students who would like to become more adept at numerical methods, the second edition of this book covers the following content: - Overview of C# programming. - The mathematical background and fundamentals of numerical methods. - plotting the computation results using a 3D chart control. - Math libraries for complex numbers and functions, real and complex vector and matrix operations, and special functions. - Numerical methods for generating random numbers and random distribution functions. - Various numerical methods for solving linear and nonlinear equations. - Numerical differentiation and integration. - Interpolations and curve fitting. - Optimization of single-variable and multi-variable functions with a variety of techniques, including advanced simulated annealing and evolutionary algorithms. - Numerical techniques for solving ordinary differential equations. - Numerical methods for solving boundary value problems. - Eigenvalue problems. - Fourier analysis. - mathematical expression parser and evaluator. In addition, this book provides testing examples for every math function and numerical method to show you how to use these functions and methods in your own .NET applications in a manageable and step-by-step fashion. Please visit the author's website for more information about this book at https://drxudotnet.com https://drxudotnet.com and https://gincker.com.
Download or read book Mathematics for Machine Learning written by Marc Peter Deisenroth and published by Cambridge University Press. This book was released on 2020-04-23 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
Download or read book Scientific Computing with Case Studies written by Dianne P. O'Leary and published by SIAM. This book was released on 2009-03-19 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a practical guide to the numerical solution of linear and nonlinear equations, differential equations, optimization problems, and eigenvalue problems. It treats standard problems and introduces important variants such as sparse systems, differential-algebraic equations, constrained optimization, Monte Carlo simulations, and parametric studies. Stability and error analysis are emphasized, and the Matlab algorithms are grounded in sound principles of software design and understanding of machine arithmetic and memory management. Nineteen case studies provide experience in mathematical modeling and algorithm design, motivated by problems in physics, engineering, epidemiology, chemistry, and biology. The topics included go well beyond the standard first-course syllabus, introducing important problems such as differential-algebraic equations and conic optimization problems, and important solution techniques such as continuation methods. The case studies cover a wide variety of fascinating applications, from modeling the spread of an epidemic to determining truss configurations.
Download or read book Introduction to High Dimensional Statistics written by Christophe Giraud and published by CRC Press. This book was released on 2021-08-25 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the first edition: "[This book] succeeds singularly at providing a structured introduction to this active field of research. ... it is arguably the most accessible overview yet published of the mathematical ideas and principles that one needs to master to enter the field of high-dimensional statistics. ... recommended to anyone interested in the main results of current research in high-dimensional statistics as well as anyone interested in acquiring the core mathematical skills to enter this area of research." —Journal of the American Statistical Association Introduction to High-Dimensional Statistics, Second Edition preserves the philosophy of the first edition: to be a concise guide for students and researchers discovering the area and interested in the mathematics involved. The main concepts and ideas are presented in simple settings, avoiding thereby unessential technicalities. High-dimensional statistics is a fast-evolving field, and much progress has been made on a large variety of topics, providing new insights and methods. Offering a succinct presentation of the mathematical foundations of high-dimensional statistics, this new edition: Offers revised chapters from the previous edition, with the inclusion of many additional materials on some important topics, including compress sensing, estimation with convex constraints, the slope estimator, simultaneously low-rank and row-sparse linear regression, or aggregation of a continuous set of estimators. Introduces three new chapters on iterative algorithms, clustering, and minimax lower bounds. Provides enhanced appendices, minimax lower-bounds mainly with the addition of the Davis-Kahan perturbation bound and of two simple versions of the Hanson-Wright concentration inequality. Covers cutting-edge statistical methods including model selection, sparsity and the Lasso, iterative hard thresholding, aggregation, support vector machines, and learning theory. Provides detailed exercises at the end of every chapter with collaborative solutions on a wiki site. Illustrates concepts with simple but clear practical examples.
Download or read book Spectral Methods written by Jie Shen and published by Springer Science & Business Media. This book was released on 2011-08-25 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: Along with finite differences and finite elements, spectral methods are one of the three main methodologies for solving partial differential equations on computers. This book provides a detailed presentation of basic spectral algorithms, as well as a systematical presentation of basic convergence theory and error analysis for spectral methods. Readers of this book will be exposed to a unified framework for designing and analyzing spectral algorithms for a variety of problems, including in particular high-order differential equations and problems in unbounded domains. The book contains a large number of figures which are designed to illustrate various concepts stressed in the book. A set of basic matlab codes has been made available online to help the readers to develop their own spectral codes for their specific applications.