EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Normal Approximation by Stein   s Method

Download or read book Normal Approximation by Stein s Method written by Louis H.Y. Chen and published by Springer Science & Business Media. This book was released on 2010-10-13 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since its introduction in 1972, Stein’s method has offered a completely novel way of evaluating the quality of normal approximations. Through its characterizing equation approach, it is able to provide approximation error bounds in a wide variety of situations, even in the presence of complicated dependence. Use of the method thus opens the door to the analysis of random phenomena arising in areas including statistics, physics, and molecular biology. Though Stein's method for normal approximation is now mature, the literature has so far lacked a complete self contained treatment. This volume contains thorough coverage of the method’s fundamentals, includes a large number of recent developments in both theory and applications, and will help accelerate the appreciation, understanding, and use of Stein's method by providing the reader with the tools needed to apply it in new situations. It addresses researchers as well as graduate students in Probability, Statistics and Combinatorics.

Book An Introduction to Stein s Method

Download or read book An Introduction to Stein s Method written by A. D. Barbour and published by World Scientific. This book was released on 2005 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: A common theme in probability theory is the approximation of complicated probability distributions by simpler ones, the central limit theorem being a classical example. Stein's method is a tool which makes this possible in a wide variety of situations. Traditional approaches, for example using Fourier analysis, become awkward to carry through in situations in which dependence plays an important part, whereas Stein's method can often still be applied to great effect. In addition, the method delivers estimates for the error in the approximation, and not just a proof of convergence. Nor is there in principle any restriction on the distribution to be approximated; it can equally well be normal, or Poisson, or that of the whole path of a random process, though the techniques have so far been worked out in much more detail for the classical approximation theorems.This volume of lecture notes provides a detailed introduction to the theory and application of Stein's method, in a form suitable for graduate students who want to acquaint themselves with the method. It includes chapters treating normal, Poisson and compound Poisson approximation, approximation by Poisson processes, and approximation by an arbitrary distribution, written by experts in the different fields. The lectures take the reader from the very basics of Stein's method to the limits of current knowledge.

Book Normal Approximations with Malliavin Calculus

Download or read book Normal Approximations with Malliavin Calculus written by Ivan Nourdin and published by Cambridge University Press. This book was released on 2012-05-10 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book shows how quantitative central limit theorems can be deduced by combining two powerful probabilistic techniques: Stein's method and Malliavin calculus.

Book Stein s Method and Applications

Download or read book Stein s Method and Applications written by A. D. Barbour and published by World Scientific. This book was released on 2005 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stein's startling technique for deriving probability approximations first appeared about 30 years ago. Since then, much has been done to refine and develop the method, but it is still a highly active field of research, with many outstanding problems, both theoretical and in applications. This volume, the proceedings of a workshop held in honour of Charles Stein in Singapore, August 1983, contains contributions from many of the mathematicians at the forefront of this effort. It provides a cross-section of the work currently being undertaken, with many pointers to future directions. The papers in the collection include applications to the study of random binary search trees, Brownian motion on manifolds, Monte-Carlo integration, Edgeworth expansions, regenerative phenomena, the geometry of random point sets, and random matrices.

Book Normal Approximation and Asymptotic Expansions

Download or read book Normal Approximation and Asymptotic Expansions written by Rabi N. Bhattacharya and published by SIAM. This book was released on 2010-11-11 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: -Fourier analysis, --

Book Approximate Computation of Expectations

Download or read book Approximate Computation of Expectations written by Charles Stein and published by IMS. This book was released on 1986 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Stein s Method

    Book Details:
  • Author : Persi Diaconis
  • Publisher : IMS
  • Release : 2004
  • ISBN : 9780940600621
  • Pages : 154 pages

Download or read book Stein s Method written by Persi Diaconis and published by IMS. This book was released on 2004 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: "These papers were presented and developed as expository talks at a summer-long workshop on Stein's method at Stanford's Department of Statistics in 1998."--P. iii.

Book High Dimensional Probability

Download or read book High Dimensional Probability written by Roman Vershynin and published by Cambridge University Press. This book was released on 2018-09-27 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.

Book Lectures on the Poisson Process

Download or read book Lectures on the Poisson Process written by Günter Last and published by Cambridge University Press. This book was released on 2017-10-26 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: A modern introduction to the Poisson process, with general point processes and random measures, and applications to stochastic geometry.

Book The Theory of Probability

Download or read book The Theory of Probability written by Santosh S. Venkatesh and published by Cambridge University Press. This book was released on 2013 with total page 830 pages. Available in PDF, EPUB and Kindle. Book excerpt: From classical foundations to modern theory, this comprehensive guide to probability interweaves mathematical proofs, historical context and detailed illustrative applications.

Book Poisson Approximation

Download or read book Poisson Approximation written by A. D. Barbour and published by . This book was released on 1992 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Poisson "law of small numbers" is a central principle in modern theories of reliability, insurance, and the statistics of extremes. It also has ramifications in apparently unrelated areas, such as the description of algebraic and combinatorial structures, and the distribution of prime numbers. Yet despite its importance, the law of small numbers is only an approximation. In 1975, however, a new technique was introduced, the Stein-Chen method, which makes it possible to estimate the accuracy of the approximation in a wide range of situations. This book provides an introduction to the method, and a varied selection of examples of its application, emphasizing the flexibility of the technique when combined with a judicious choice of coupling. It also contains more advanced material, in particular on compound Poisson and Poisson process approximation, where the reader is brought to the boundaries of current knowledge. The study will be of special interest to postgraduate students and researchers in applied probability as well as computer scientists.

Book Stability Problems for Stochastic Models  Theory and Applications

Download or read book Stability Problems for Stochastic Models Theory and Applications written by Alexander Zeifman and published by MDPI. This book was released on 2021-03-05 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this Special Issue of Mathematics is to commemorate the outstanding Russian mathematician Vladimir Zolotarev, whose 90th birthday will be celebrated on February 27th, 2021. The present Special Issue contains a collection of new papers by participants in sessions of the International Seminar on Stability Problems for Stochastic Models founded by Zolotarev. Along with research in probability distributions theory, limit theorems of probability theory, stochastic processes, mathematical statistics, and queuing theory, this collection contains papers dealing with applications of stochastic models in modeling of pension schemes, modeling of extreme precipitation, construction of statistical indicators of scientific publication importance, and other fields.

Book All of Statistics

    Book Details:
  • Author : Larry Wasserman
  • Publisher : Springer Science & Business Media
  • Release : 2013-12-11
  • ISBN : 0387217363
  • Pages : 446 pages

Download or read book All of Statistics written by Larry Wasserman and published by Springer Science & Business Media. This book was released on 2013-12-11 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.

Book Probability

    Book Details:
  • Author : Rick Durrett
  • Publisher : Cambridge University Press
  • Release : 2010-08-30
  • ISBN : 113949113X
  • Pages : pages

Download or read book Probability written by Rick Durrett and published by Cambridge University Press. This book was released on 2010-08-30 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject.

Book Bayesian Data Analysis  Third Edition

Download or read book Bayesian Data Analysis Third Edition written by Andrew Gelman and published by CRC Press. This book was released on 2013-11-01 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

Book An Introduction to Measure Theory

Download or read book An Introduction to Measure Theory written by Terence Tao and published by American Mathematical Soc.. This book was released on 2021-09-03 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Carathéodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.

Book Geometric Approximation Algorithms

Download or read book Geometric Approximation Algorithms written by Sariel Har-Peled and published by American Mathematical Soc.. This book was released on 2011 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exact algorithms for dealing with geometric objects are complicated, hard to implement in practice, and slow. Over the last 20 years a theory of geometric approximation algorithms has emerged. These algorithms tend to be simple, fast, and more robust than their exact counterparts. This book is the first to cover geometric approximation algorithms in detail. In addition, more traditional computational geometry techniques that are widely used in developing such algorithms, like sampling, linear programming, etc., are also surveyed. Other topics covered include approximate nearest-neighbor search, shape approximation, coresets, dimension reduction, and embeddings. The topics covered are relatively independent and are supplemented by exercises. Close to 200 color figures are included in the text to illustrate proofs and ideas.