EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Nonparametric Analysis of Longitudinal Data in Factorial Experiments

Download or read book Nonparametric Analysis of Longitudinal Data in Factorial Experiments written by Edgar Brunner and published by Wiley-Interscience. This book was released on 2002 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authoritative reference on nonparametric methods for evaluating longitudinal data in factorial designs Broadening the range of techniques that can be used to evaluate longitudinal data, Nonparametric Analysis of Longitudinal Data in Factorial Experiments presents nonparametric methods of evaluation that supplement the generalized linear models approach. Emphasizing the practical application of these methods in statistical procedures, this book provides a unified approach for the analysis of factorial designs involving longitudinal data that is appropriate for metric data, count data, ordered categorical data, and dichotomous data. Topics covered include nonparametric models, effects and hypotheses in experimental design, estimators for relative effects, experiments for one and several groups of subjects, multifactorial experiments, dependent replications, and experiments with numerous time points. The basic mathematical principles for the methods introduced here are described in theory, consistent with the book's minimal math requirements. Simple approximations for small data sets are provided, as well as ample chapter exercises to test skills, an appendix that includes original data for the examples used throughout the book, and downloadable SAS-IML macros for implementing the more extensive calculations. All applications are designed to be useful in many fields. Generously supplemented with more than 110 graphs and tables, Nonparametric Analysis of Longitudinal Data in Factorial Experiments is an essential reference for statisticians and biometricians, researchers in clinical trials, psychological studies, and in the fields of forestry, agriculture, sociology, ecology, and biology, as well as graduate students in statistics and biostatistics.

Book Applied Longitudinal Analysis

Download or read book Applied Longitudinal Analysis written by Garrett M. Fitzmaurice and published by John Wiley & Sons. This book was released on 2004-07 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher Description

Book Robust Rank Based and Nonparametric Methods

Download or read book Robust Rank Based and Nonparametric Methods written by Regina Y. Liu and published by Springer. This book was released on 2016-09-20 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: The contributors to this volume include many of the distinguished researchers in this area. Many of these scholars have collaborated with Joseph McKean to develop underlying theory for these methods, obtain small sample corrections, and develop efficient algorithms for their computation. The papers cover the scope of the area, including robust nonparametric rank-based procedures through Bayesian and big data rank-based analyses. Areas of application include biostatistics and spatial areas. Over the last 30 years, robust rank-based and nonparametric methods have developed considerably. These procedures generalize traditional Wilcoxon-type methods for one- and two-sample location problems. Research into these procedures has culminated in complete analyses for many of the models used in practice including linear, generalized linear, mixed, and nonlinear models. Settings are both multivariate and univariate. With the development of R packages in these areas, computation of these procedures is easily shared with readers and implemented. This book is developed from the International Conference on Robust Rank-Based and Nonparametric Methods, held at Western Michigan University in April 2015.

Book Robust Methods in Biostatistics

Download or read book Robust Methods in Biostatistics written by Stephane Heritier and published by John Wiley & Sons. This book was released on 2009-05-11 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Robust statistics is an extension of classical statistics that specifically takes into account the concept that the underlying models used to describe data are only approximate. Its basic philosophy is to produce statistical procedures which are stable when the data do not exactly match the postulated models as it is the case for example with outliers. Robust Methods in Biostatistics proposes robust alternatives to common methods used in statistics in general and in biostatistics in particular and illustrates their use on many biomedical datasets. The methods introduced include robust estimation, testing, model selection, model check and diagnostics. They are developed for the following general classes of models: Linear regression Generalized linear models Linear mixed models Marginal longitudinal data models Cox survival analysis model The methods are introduced both at a theoretical and applied level within the framework of each general class of models, with a particular emphasis put on practical data analysis. This book is of particular use for research students,applied statisticians and practitioners in the health field interested in more stable statistical techniques. An accompanying website provides R code for computing all of the methods described, as well as for analyzing all the datasets used in the book.

Book Reliability and Risk

    Book Details:
  • Author : Nozer D. Singpurwalla
  • Publisher : John Wiley & Sons
  • Release : 2006-08-14
  • ISBN : 0470060336
  • Pages : 396 pages

Download or read book Reliability and Risk written by Nozer D. Singpurwalla and published by John Wiley & Sons. This book was released on 2006-08-14 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: We all like to know how reliable and how risky certain situations are, and our increasing reliance on technology has led to the need for more precise assessments than ever before. Such precision has resulted in efforts both to sharpen the notions of risk and reliability, and to quantify them. Quantification is required for normative decision-making, especially decisions pertaining to our safety and wellbeing. Increasingly in recent years Bayesian methods have become key to such quantifications. Reliability and Risk provides a comprehensive overview of the mathematical and statistical aspects of risk and reliability analysis, from a Bayesian perspective. This book sets out to change the way in which we think about reliability and survival analysis by casting them in the broader context of decision-making. This is achieved by: Providing a broad coverage of the diverse aspects of reliability, including: multivariate failure models, dynamic reliability, event history analysis, non-parametric Bayes, competing risks, co-operative and competing systems, and signature analysis. Covering the essentials of Bayesian statistics and exchangeability, enabling readers who are unfamiliar with Bayesian inference to benefit from the book. Introducing the notion of “composite reliability”, or the collective reliability of a population of items. Discussing the relationship between notions of reliability and survival analysis and econometrics and financial risk. Reliability and Risk can most profitably be used by practitioners and research workers in reliability and survivability as a source of information, reference, and open problems. It can also form the basis of a graduate level course in reliability and risk analysis for students in statistics, biostatistics, engineering (industrial, nuclear, systems), operations research, and other mathematically oriented scientists, wherein the instructor could supplement the material with examples and problems.

Book Random Graphs for Statistical Pattern Recognition

Download or read book Random Graphs for Statistical Pattern Recognition written by David J. Marchette and published by John Wiley & Sons. This book was released on 2005-02-11 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: A timely convergence of two widely used disciplines Random Graphs for Statistical Pattern Recognition is the first book to address the topic of random graphs as it applies to statistical pattern recognition. Both topics are of vital interest to researchers in various mathematical and statistical fields and have never before been treated together in one book. The use of data random graphs in pattern recognition in clustering and classification is discussed, and the applications for both disciplines are enhanced with new tools for the statistical pattern recognition community. New and interesting applications for random graph users are also introduced. This important addition to statistical literature features: Information that previously has been available only through scattered journal articles Practical tools and techniques for a wide range of real-world applications New perspectives on the relationship between pattern recognition and computational geometry Numerous experimental problems to encourage practical applications With its comprehensive coverage of two timely fields, enhanced with many references and real-world examples, Random Graphs for Statistical Pattern Recognition is a valuable resource for industry professionals and students alike.

Book Recent Advances in Quantitative Methods in Cancer and Human Health Risk Assessment

Download or read book Recent Advances in Quantitative Methods in Cancer and Human Health Risk Assessment written by Lutz Edler and published by John Wiley & Sons. This book was released on 2005-12-13 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: Human health risk assessment involves the measuring of risk of exposure to disease, with a view to improving disease prevention. Mathematical, biological, statistical, and computational methods play a key role in exposure assessment, hazard assessment and identification, and dose-response modelling. Recent Advances in Quantitative Methods in Cancer and Human Health Risk Assessment is a comprehensive text that accounts for the wealth of new biological data as well as new biological, toxicological, and medical approaches adopted in risk assessment. It provides an authoritative compendium of state-of-the-art methods proposed and used, featuring contributions from eminent authors with varied experience from academia, government, and industry. Provides a comprehensive summary of currently available quantitative methods for risk assessment of both cancer and non-cancer problems. Describes the applications and the limitations of current mathematical modelling and statistical analysis methods (classical and Bayesian). Includes an extensive introduction and discussion to each chapter. Features detailed studies of risk assessments using biologically-based modelling approaches. Discusses the varying computational aspects of the methods proposed. Provides a global perspective on human health risk assessment by featuring case studies from a wide range of countries. Features an extensive bibliography with links to relevant background information within each chapter. Recent Advances in Quantitative Methods in Cancer and Human Health Risk Assessment will appeal to researchers and practitioners in public health & epidemiology, and postgraduate students alike. It will also be of interest to professionals working in risk assessment agencies.

Book Markov Processes and Applications

Download or read book Markov Processes and Applications written by Etienne Pardoux and published by John Wiley & Sons. This book was released on 2008-11-20 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This well-written book provides a clear and accessible treatment of the theory of discrete and continuous-time Markov chains, with an emphasis towards applications. The mathematical treatment is precise and rigorous without superfluous details, and the results are immediately illustrated in illuminating examples. This book will be extremely useful to anybody teaching a course on Markov processes." Jean-François Le Gall, Professor at Université de Paris-Orsay, France. Markov processes is the class of stochastic processes whose past and future are conditionally independent, given their present state. They constitute important models in many applied fields. After an introduction to the Monte Carlo method, this book describes discrete time Markov chains, the Poisson process and continuous time Markov chains. It also presents numerous applications including Markov Chain Monte Carlo, Simulated Annealing, Hidden Markov Models, Annotation and Alignment of Genomic sequences, Control and Filtering, Phylogenetic tree reconstruction and Queuing networks. The last chapter is an introduction to stochastic calculus and mathematical finance. Features include: The Monte Carlo method, discrete time Markov chains, the Poisson process and continuous time jump Markov processes. An introduction to diffusion processes, mathematical finance and stochastic calculus. Applications of Markov processes to various fields, ranging from mathematical biology, to financial engineering and computer science. Numerous exercises and problems with solutions to most of them

Book Matrix Algebra Useful for Statistics

Download or read book Matrix Algebra Useful for Statistics written by Shayle R. Searle and published by John Wiley & Sons. This book was released on 2006-03-20 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected booksthat have been made more accessible to consumers in an effort toincrease global appeal and general circulation. With these newunabridged softcover volumes, Wiley hopes to extend the lives ofthese works by making them available to future generations ofstatisticians, mathematicians, and scientists. "This book is intended to teach useful matrix algebra to 'students,teachers, consultants, researchers, and practitioners' in'statistics and other quantitative methods'.The author concentrateson practical matters, and writes in a friendly and informal style .. . this is a useful and enjoyable book to have at hand." -Biometrics This book is an easy-to-understand guide to matrix algebra and itsuses in statistical analysis. The material is presented in anexplanatory style rather than the formal theorem-proof format. Thisself-contained text includes numerous applied illustrations,numerical examples, and exercises.

Book Bayesian Statistical Modelling

Download or read book Bayesian Statistical Modelling written by Peter Congdon and published by John Wiley & Sons. This book was released on 2007-04-04 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian methods combine the evidence from the data at hand with previous quantitative knowledge to analyse practical problems in a wide range of areas. The calculations were previously complex, but it is now possible to routinely apply Bayesian methods due to advances in computing technology and the use of new sampling methods for estimating parameters. Such developments together with the availability of freeware such as WINBUGS and R have facilitated a rapid growth in the use of Bayesian methods, allowing their application in many scientific disciplines, including applied statistics, public health research, medical science, the social sciences and economics. Following the success of the first edition, this reworked and updated book provides an accessible approach to Bayesian computing and analysis, with an emphasis on the principles of prior selection, identification and the interpretation of real data sets. The second edition: Provides an integrated presentation of theory, examples, applications and computer algorithms. Discusses the role of Markov Chain Monte Carlo methods in computing and estimation. Includes a wide range of interdisciplinary applications, and a large selection of worked examples from the health and social sciences. Features a comprehensive range of methodologies and modelling techniques, and examines model fitting in practice using Bayesian principles. Provides exercises designed to help reinforce the reader’s knowledge and a supplementary website containing data sets and relevant programs. Bayesian Statistical Modelling is ideal for researchers in applied statistics, medical science, public health and the social sciences, who will benefit greatly from the examples and applications featured. The book will also appeal to graduate students of applied statistics, data analysis and Bayesian methods, and will provide a great source of reference for both researchers and students. Praise for the First Edition: “It is a remarkable achievement to have carried out such a range of analysis on such a range of data sets. I found this book comprehensive and stimulating, and was thoroughly impressed with both the depth and the range of the discussions it contains.” – ISI - Short Book Reviews “This is an excellent introductory book on Bayesian modelling techniques and data analysis” – Biometrics “The book fills an important niche in the statistical literature and should be a very valuable resource for students and professionals who are utilizing Bayesian methods.” – Journal of Mathematical Psychology

Book Multivariate Observations

Download or read book Multivariate Observations written by George A. F. Seber and published by John Wiley & Sons. This book was released on 2009-09-25 with total page 718 pages. Available in PDF, EPUB and Kindle. Book excerpt: WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "In recent years many monographs have been published on specialized aspects of multivariate data-analysis–on cluster analysis, multidimensional scaling, correspondence analysis, developments of discriminant analysis, graphical methods, classification, and so on. This book is an attempt to review these newer methods together with the classical theory. . . . This one merits two cheers." –J. C. Gower, Department of Statistics Rothamsted Experimental Station, Harpenden, U.K. Review in Biometrics, June 1987 Multivariate Observations is a comprehensive sourcebook that treats data-oriented techniques as well as classical methods. Emphasis is on principles rather than mathematical detail, and coverage ranges from the practical problems of graphically representing high-dimensional data to the theoretical problems relating to matrices of random variables. Each chapter serves as a self-contained survey of a specific topic. The book includes many numerical examples and over 1,100 references.

Book Constrained Statistical Inference

Download or read book Constrained Statistical Inference written by Mervyn J. Silvapulle and published by John Wiley & Sons. This book was released on 2011-09-15 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date approach to understanding statistical inference Statistical inference is finding useful applications in numerous fields, from sociology and econometrics to biostatistics. This volume enables professionals in these and related fields to master the concepts of statistical inference under inequality constraints and to apply the theory to problems in a variety of areas. Constrained Statistical Inference: Order, Inequality, and Shape Constraints provides a unified and up-to-date treatment of the methodology. It clearly illustrates concepts with practical examples from a variety of fields, focusing on sociology, econometrics, and biostatistics. The authors also discuss a broad range of other inequality-constrained inference problems that do not fit well in the contemplated unified framework, providing a meaningful way for readers to comprehend methodological resolutions. Chapter coverage includes: Population means and isotonic regression Inequality-constrained tests on normal means Tests in general parametric models Likelihood and alternatives Analysis of categorical data Inference on monotone density function, unimodal density function, shape constraints, and DMRL functions Bayesian perspectives, including Stein’s Paradox, shrinkage estimation, and decision theory

Book Robust Regression and Outlier Detection

Download or read book Robust Regression and Outlier Detection written by Peter J. Rousseeuw and published by John Wiley & Sons. This book was released on 2003-10-03 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "The writing style is clear and informal, and much of the discussion is oriented to application. In short, the book is a keeper." –Mathematical Geology "I would highly recommend the addition of this book to the libraries of both students and professionals. It is a useful textbook for the graduate student, because it emphasizes both the philosophy and practice of robustness in regression settings, and it provides excellent examples of precise, logical proofs of theorems. . . .Even for those who are familiar with robustness, the book will be a good reference because it consolidates the research in high-breakdown affine equivariant estimators and includes an extensive bibliography in robust regression, outlier diagnostics, and related methods. The aim of this book, the authors tell us, is ‘to make robust regression available for everyday statistical practice.’ Rousseeuw and Leroy have included all of the necessary ingredients to make this happen." –Journal of the American Statistical Association

Book Applied Survival Analysis

Download or read book Applied Survival Analysis written by David W. Hosmer, Jr. and published by John Wiley & Sons. This book was released on 2011-09-23 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: THE MOST PRACTICAL, UP-TO-DATE GUIDE TO MODELLING AND ANALYZING TIME-TO-EVENT DATA—NOW IN A VALUABLE NEW EDITION Since publication of the first edition nearly a decade ago, analyses using time-to-event methods have increase considerably in all areas of scientific inquiry mainly as a result of model-building methods available in modern statistical software packages. However, there has been minimal coverage in the available literature to9 guide researchers, practitioners, and students who wish to apply these methods to health-related areas of study. Applied Survival Analysis, Second Edition provides a comprehensive and up-to-date introduction to regression modeling for time-to-event data in medical, epidemiological, biostatistical, and other health-related research. This book places a unique emphasis on the practical and contemporary applications of regression modeling rather than the mathematical theory. It offers a clear and accessible presentation of modern modeling techniques supplemented with real-world examples and case studies. Key topics covered include: variable selection, identification of the scale of continuous covariates, the role of interactions in the model, assessment of fit and model assumptions, regression diagnostics, recurrent event models, frailty models, additive models, competing risk models, and missing data. Features of the Second Edition include: Expanded coverage of interactions and the covariate-adjusted survival functions The use of the Worchester Heart Attack Study as the main modeling data set for illustrating discussed concepts and techniques New discussion of variable selection with multivariable fractional polynomials Further exploration of time-varying covariates, complex with examples Additional treatment of the exponential, Weibull, and log-logistic parametric regression models Increased emphasis on interpreting and using results as well as utilizing multiple imputation methods to analyze data with missing values New examples and exercises at the end of each chapter Analyses throughout the text are performed using Stata® Version 9, and an accompanying FTP site contains the data sets used in the book. Applied Survival Analysis, Second Edition is an ideal book for graduate-level courses in biostatistics, statistics, and epidemiologic methods. It also serves as a valuable reference for practitioners and researchers in any health-related field or for professionals in insurance and government.

Book Counting Processes and Survival Analysis

Download or read book Counting Processes and Survival Analysis written by Thomas R. Fleming and published by John Wiley & Sons. This book was released on 2011-09-20 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "The book is a valuable completion of the literature in this field. It is written in an ambitious mathematical style and can be recommended to statisticians as well as biostatisticians." -Biometrische Zeitschrift "Not many books manage to combine convincingly topics from probability theory over mathematical statistics to applied statistics. This is one of them. The book has other strong points to recommend it: it is written with meticulous care, in a lucid style, general results being illustrated by examples from statistical theory and practice, and a bunch of exercises serve to further elucidate and elaborate on the text." -Mathematical Reviews "This book gives a thorough introduction to martingale and counting process methods in survival analysis thereby filling a gap in the literature." -Zentralblatt für Mathematik und ihre Grenzgebiete/Mathematics Abstracts "The authors have performed a valuable service to researchers in providing this material in [a] self-contained and accessible form. . . This text [is] essential reading for the probabilist or mathematical statistician working in the area of survival analysis." -Short Book Reviews, International Statistical Institute Counting Processes and Survival Analysis explores the martingale approach to the statistical analysis of counting processes, with an emphasis on the application of those methods to censored failure time data. This approach has proven remarkably successful in yielding results about statistical methods for many problems arising in censored data. A thorough treatment of the calculus of martingales as well as the most important applications of these methods to censored data is offered. Additionally, the book examines classical problems in asymptotic distribution theory for counting process methods and newer methods for graphical analysis and diagnostics of censored data. Exercises are included to provide practice in applying martingale methods and insight into the calculus itself.

Book Generalized Inference in Repeated Measures

Download or read book Generalized Inference in Repeated Measures written by Samaradasa Weerahandi and published by John Wiley & Sons. This book was released on 2004-08-24 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: A complete guide to powerful and practical statistical modeling using MANOVA Numerous statistical applications are time dependent. Virtually all biomedical, pharmaceutical, and industrial experiments demand repeated measurements over time. The same holds true for market research and analysis. Yet conventional methods, such as the Repeated Measures Analysis of Variance (Rm ANOVA), do not always yield exact solutions, obliging practitioners to settle for asymptotic results and approximate solutions. Generalized inference in Multivariate Analysis of Variance (MANOVA), mixed models, and growth curves offer exact methods of data analysis under milder conditions without deviating from the conventional philosophy of statistical inference. Generalized Inference in Repeated Measures is a concise, self-contained guide to the use of these innovative solutions, presenting them as extensions of–rather than alternatives to–classical methods of statistical evaluation. Requiring minimal prior knowledge of statistical concepts in the evaluation of linear models, the book provides exact parametric methods for each application considered, with solutions presented in terms of generalized p-values. Coverage includes: New concepts in statistical inference, with special focus on generalized p-values and generalized confidence intervals One-way and two-way ANOVA, in cases of equal and unequal variances Basic and higher-way mixed models, including testing and estimation of fixed effects and variance components Multivariate populations, including basic inference, comparison, and analysis of variance Basic, widely used repeated measures models including crossover designs and growth curves With a comprehensive set of formulas, illustrative examples, and exercises in each chapter, Generalized Inference in Repeated Measures is ideal as both a comprehensive reference for research professionals and a text for students.

Book Operational Risk

Download or read book Operational Risk written by Harry H. Panjer and published by John Wiley & Sons. This book was released on 2006-07-28 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover how to optimize business strategies from both qualitative and quantitative points of view Operational Risk: Modeling Analytics is organized around the principle that the analysis of operational risk consists, in part, of the collection of data and the building of mathematical models to describe risk. This book is designed to provide risk analysts with a framework of the mathematical models and methods used in the measurement and modeling of operational risk in both the banking and insurance sectors. Beginning with a foundation for operational risk modeling and a focus on the modeling process, the book flows logically to discussion of probabilistic tools for operational risk modeling and statistical methods for calibrating models of operational risk. Exercises are included in chapters involving numerical computations for students' practice and reinforcement of concepts. Written by Harry Panjer, one of the foremost authorities in the world on risk modeling and its effects in business management, this is the first comprehensive book dedicated to the quantitative assessment of operational risk using the tools of probability, statistics, and actuarial science. In addition to providing great detail of the many probabilistic and statistical methods used in operational risk, this book features: * Ample exercises to further elucidate the concepts in the text * Definitive coverage of distribution functions and related concepts * Models for the size of losses * Models for frequency of loss * Aggregate loss modeling * Extreme value modeling * Dependency modeling using copulas * Statistical methods in model selection and calibration Assuming no previous expertise in either operational risk terminology or in mathematical statistics, the text is designed for beginning graduate-level courses on risk and operational management or enterprise risk management. This book is also useful as a reference for practitioners in both enterprise risk management and risk and operational management.