Download or read book Nonnegative Matrices and Applicable Topics in Linear Algebra written by Alexander Graham and published by Dover Publications. This book was released on 2019-11-13 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonnegative matrices is an increasingly important subject in economics, control theory, numerical analysis, Markov chains, and other areas. This concise treatment is directed toward undergraduates who lack specialized knowledge at the postgraduate level of mathematics and related fields, such as mathematical economics and operations research. An Introductory Survey encompasses some aspects of matrix theory and its applications and other relevant topics in linear algebra, including certain facets of graph theory. Subsequent chapters cover various points of the theory of normal matrices, comprising unitary and Hermitian matrices, and the properties of positive definite matrices. An exploration of the main topic, nonnegative matrices, is followed by a discussion of M-matrices. The final chapter examines stochastic, genetic, and economic models. The important concepts are illustrated by simple worked examples. Problems appear at the conclusion of most chapters, with solutions at the end of the book.
Download or read book Nonnegative Matrices in the Mathematical Sciences written by Abraham Berman and published by Academic Press. This book was released on 2014-05-10 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonnegative Matrices in the Mathematical Sciences provides information pertinent to the fundamental aspects of the theory of nonnegative matrices. This book describes selected applications of the theory to numerical analysis, probability, economics, and operations research. Organized into 10 chapters, this book begins with an overview of the properties of nonnegative matrices. This text then examines the inverse-positive matrices. Other chapters consider the basic approaches to the study of nonnegative matrices, namely, geometrical and combinatorial. This book discusses as well some useful ideas from the algebraic theory of semigroups and considers a canonical form for nonnegative idempotent matrices and special types of idempotent matrices. The final chapter deals with the linear complementary problem (LCP). This book is a valuable resource for mathematical economists, mathematical programmers, statisticians, mathematicians, and computer scientists.
Download or read book Linear Algebra and Matrices written by Helene Shapiro and published by American Mathematical Soc.. This book was released on 2015-10-08 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear algebra and matrix theory are fundamental tools for almost every area of mathematics, both pure and applied. This book combines coverage of core topics with an introduction to some areas in which linear algebra plays a key role, for example, block designs, directed graphs, error correcting codes, and linear dynamical systems. Notable features include a discussion of the Weyr characteristic and Weyr canonical forms, and their relationship to the better-known Jordan canonical form; the use of block cyclic matrices and directed graphs to prove Frobenius's theorem on the structure of the eigenvalues of a nonnegative, irreducible matrix; and the inclusion of such combinatorial topics as BIBDs, Hadamard matrices, and strongly regular graphs. Also included are McCoy's theorem about matrices with property P, the Bruck-Ryser-Chowla theorem on the existence of block designs, and an introduction to Markov chains. This book is intended for those who are familiar with the linear algebra covered in a typical first course and are interested in learning more advanced results.
Download or read book Nonnegative Matrices and Applications written by R. B. Bapat and published by Cambridge University Press. This book was released on 1997-03-28 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an integrated treatment of the theory of nonnegative matrices (matrices with only positive numbers or zero as entries) and some related classes of positive matrices, concentrating on connections with game theory, combinatorics, inequalities, optimisation and mathematical economics. The wide variety of applications, which include price fixing, scheduling and the fair division problem, have been carefully chosen both for their elegant mathematical content and for their accessibility to students with minimal preparation. Many results in matrix theory are also presented. The treatment is rigorous and almost all results are proved completely. These results and applications will be of great interest to researchers in linear programming, statistics and operations research. The minimal prerequisites also make the book accessible to first-year graduate students.
Download or read book Introduction to Applied Linear Algebra written by Stephen Boyd and published by Cambridge University Press. This book was released on 2018-06-07 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.
Download or read book Totally Nonnegative Matrices written by Shaun M. Fallat and published by Princeton University Press. This book was released on 2011-04-11 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: Totally nonnegative matrices arise in a remarkable variety of mathematical applications. This book is a comprehensive and self-contained study of the essential theory of totally nonnegative matrices, defined by the nonnegativity of all subdeterminants. It explores methodological background, historical highlights of key ideas, and specialized topics. The book uses classical and ad hoc tools, but a unifying theme is the elementary bidiagonal factorization, which has emerged as the single most important tool for this particular class of matrices. Recent work has shown that bidiagonal factorizations may be viewed in a succinct combinatorial way, leading to many deep insights. Despite slow development, bidiagonal factorizations, along with determinants, now provide the dominant methodology for understanding total nonnegativity. The remainder of the book treats important topics, such as recognition of totally nonnegative or totally positive matrices, variation diminution, spectral properties, determinantal inequalities, Hadamard products, and completion problems associated with totally nonnegative or totally positive matrices. The book also contains sample applications, an up-to-date bibliography, a glossary of all symbols used, an index, and related references.
Download or read book Linear Algebra and Matrices written by Shmuel Friedland and published by SIAM. This book was released on 2018-01-30 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introductory textbook grew out of several courses in linear algebra given over more than a decade and includes such helpful material as constructive discussions about the motivation of fundamental concepts, many worked-out problems in each chapter, and topics rarely covered in typical linear algebra textbooks.The authors use abstract notions and arguments to give the complete proof of the Jordan canonical form and, more generally, the rational canonical form of square matrices over fields. They also provide the notion of tensor products of vector spaces and linear transformations. Matrices are treated in depth, with coverage of the stability of matrix iterations, the eigenvalue properties of linear transformations in inner product spaces, singular value decomposition, and min-max characterizations of Hermitian matrices and nonnegative irreducible matrices. The authors show the many topics and tools encompassed by modern linear algebra to emphasize its relationship to other areas of mathematics. The text is intended for advanced undergraduate students. Beginning graduate students seeking an introduction to the subject will also find it of interest.
Download or read book A Concise Text on Advanced Linear Algebra written by Yisong Yang and published by Cambridge University Press. This book was released on 2015 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: This engaging, well-motivated textbook helps advanced undergraduate students to grasp core concepts and reveals applications in mathematics and beyond.
Download or read book Mathematical Principles of the Internet Volume 2 written by Nirdosh Bhatnagar and published by CRC Press. This book was released on 2018-11-21 with total page 694 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume set on Mathematical Principles of the Internet provides a comprehensive overview of the mathematical principles of Internet engineering. The books do not aim to provide all of the mathematical foundations upon which the Internet is based. Instead, they cover a partial panorama and the key principles. Volume 1 explores Internet engineering, while the supporting mathematics is covered in Volume 2. The chapters on mathematics complement those on the engineering episodes, and an effort has been made to make this work succinct, yet self-contained. Elements of information theory, algebraic coding theory, cryptography, Internet traffic, dynamics and control of Internet congestion, and queueing theory are discussed. In addition, stochastic networks, graph-theoretic algorithms, application of game theory to the Internet, Internet economics, data mining and knowledge discovery, and quantum computation, communication, and cryptography are also discussed. In order to study the structure and function of the Internet, only a basic knowledge of number theory, abstract algebra, matrices and determinants, graph theory, geometry, analysis, optimization theory, probability theory, and stochastic processes, is required. These mathematical disciplines are defined and developed in the books to the extent that is needed to develop and justify their application to Internet engineering.
Download or read book A Matrix Handbook for Statisticians written by George A. F. Seber and published by John Wiley & Sons. This book was released on 2008-01-28 with total page 592 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive, must-have handbook of matrix methods with a unique emphasis on statistical applications This timely book, A Matrix Handbook for Statisticians, provides a comprehensive, encyclopedic treatment of matrices as they relate to both statistical concepts and methodologies. Written by an experienced authority on matrices and statistical theory, this handbook is organized by topic rather than mathematical developments and includes numerous references to both the theory behind the methods and the applications of the methods. A uniform approach is applied to each chapter, which contains four parts: a definition followed by a list of results; a short list of references to related topics in the book; one or more references to proofs; and references to applications. The use of extensive cross-referencing to topics within the book and external referencing to proofs allows for definitions to be located easily as well as interrelationships among subject areas to be recognized. A Matrix Handbook for Statisticians addresses the need for matrix theory topics to be presented together in one book and features a collection of topics not found elsewhere under one cover. These topics include: Complex matrices A wide range of special matrices and their properties Special products and operators, such as the Kronecker product Partitioned and patterned matrices Matrix analysis and approximation Matrix optimization Majorization Random vectors and matrices Inequalities, such as probabilistic inequalities Additional topics, such as rank, eigenvalues, determinants, norms, generalized inverses, linear and quadratic equations, differentiation, and Jacobians, are also included. The book assumes a fundamental knowledge of vectors and matrices, maintains a reasonable level of abstraction when appropriate, and provides a comprehensive compendium of linear algebra results with use or potential use in statistics. A Matrix Handbook for Statisticians is an essential, one-of-a-kind book for graduate-level courses in advanced statistical studies including linear and nonlinear models, multivariate analysis, and statistical computing. It also serves as an excellent self-study guide for statistical researchers.
Download or read book Positive Linear Systems written by Lorenzo Farina and published by John Wiley & Sons. This book was released on 2011-09-30 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: A complete study on an important class of linear dynamicalsystems-positive linear systems One of the most often-encountered systems in nearly all areas ofscience and technology, positive linear systems is a specific butremarkable and fascinating class. Renowned scientists LorenzoFarina and Sergio Rinaldi introduce readers to the world ofpositive linear systems in their rigorous but highly accessiblebook, rich in applications, examples, and figures. This professional reference is divided into three main parts: Thefirst part contains the definitions and basic properties ofpositive linear systems. The second part, following the theoreticalexposition, reports the main conceptual results, consideringapplicable examples taken from a number of widely used models. Thethird part is devoted to the study of some classes of positivelinear systems of particular relevance in applications (such as theLeontief model, the Leslie model, the Markov chains, thecompartmental systems, and the queueing systems). Readers familiarwith linear algebra and linear systems theory will appreciate theway arguments are treated and presented. Extraordinarily comprehensive, Positive Linear Systemsfeatures: * Applications from a variety of backgrounds including modeling,control engineering, computer science, demography, economics,bioengineering, chemistry, and ecology * References and annotated bibliographies throughout the book * Two appendices concerning linear algebra and linear systemstheory for readers unfamiliar with the mathematics used Farina and Rinaldi make no effort to hide their enthusiasm for thetopics presented, making Positive Linear Systems: Theory andApplications an indispensable resource for researchers andprofessionals in a broad range of fields.
Download or read book Matrices And Their Roots A Textbook Of Matrix Algebra written by A R G Heesterman and published by World Scientific Publishing Company. This book was released on 1990-12-31 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook addresses itself to two groups of students who need mathematics in an applied context: undergraduates starting at the beginning, and postgraduates who need reference-material, but who, not being mathematics specialists, nevertheless are not best served by an ordinary mathematics textbook, which will generally be at a higher level of abstraction. It gives full proofs throughout, and is illustrated with a large number of numerical examples, reinforcing the student's grasp of the topics covered by exercises and corresponding answersheets, and by the corresponding tutorial program ILLUSTRATE. The program ‘Illustrate’ will run on any IBM compatible micro-computer. The relevant areas of application are economics, econometrics, mathematical programming and engineering.
Download or read book Matrix Inequalities for Iterative Systems written by Hanjo Taubig and published by CRC Press. This book was released on 2017-02-03 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book reviews inequalities for weighted entry sums of matrix powers. Applications range from mathematics and CS to pure sciences. It unifies and generalizes several results for products and powers of sesquilinear forms derived from powers of Hermitian, positive-semidefinite, as well as nonnegative matrices. It shows that some inequalities are valid only in specific cases. How to translate the Hermitian matrix results into results for alternating powers of general rectangular matrices? Inequalities that compare the powers of the row and column sums to the row and column sums of the matrix powers are refined for nonnegative matrices. Lastly, eigenvalue bounds and derive results for iterated kernels are improved.
Download or read book Matrix Theory written by Fuzhen Zhang and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume concisely presents fundamental ideas, results, and techniques in linear algebra and mainly matrix theory. Each chapter focuses on the results, techniques, and methods that are beautiful, interesting, and representative, followed by carefully selected problems. For many theorems several different proofs are given. The only prerequisites are a decent background in elementary linear algebra and calculus.
Download or read book Control of Uncertain Dynamic Systems written by Shankar P. Bhattacharyya and published by CRC Press. This book was released on 2020-09-23 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of 34 papers presented by leading researchers at the International Workshop on Robust Control held in San Antonio, Texas in March 1991. The common theme tying these papers together is the analysis, synthesis, and design of control systems subject to various uncertainties. The papers describe the latest results in parametric understanding, H8 uncertainty, l1 optical control, and Quantitative Feedback Theory (QFT). The book is the first to bring together all the diverse points of view addressing the robust control problem and should strongly influence development in the robust control field for years to come. For this reason, control theorists, engineers, and applied mathematicians should consider it a crucial acquisition for their libraries.
Download or read book The Complex Matters Of The Mind written by Franco F Orsucci and published by World Scientific. This book was released on 1998-04-30 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the successes and difficulties of nonlinear studies, particularly in the areas of Mind Sciences. It atttempts to answer the following questions: is an interdisciplinary contamination of complexity studies in different disciplines useful? Does this contamination originate in a transdisciplinary toolbox of methods and models which is worth calling it “Nonlinear Science”? What are the relations between the metaphoric approach and the mathematical approach in natural sciences and humanities? Complexity in the Life Sciences represents a fundamental workbench for these kinds of problems. The fascinating challenge in these areas is represented by studies on mind functioning.
Download or read book Random Walks and Diffusions on Graphs and Databases written by Philipp Blanchard and published by Springer Science & Business Media. This book was released on 2011-05-26 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most networks and databases that humans have to deal with contain large, albeit finite number of units. Their structure, for maintaining functional consistency of the components, is essentially not random and calls for a precise quantitative description of relations between nodes (or data units) and all network components. This book is an introduction, for both graduate students and newcomers to the field, to the theory of graphs and random walks on such graphs. The methods based on random walks and diffusions for exploring the structure of finite connected graphs and databases are reviewed (Markov chain analysis). This provides the necessary basis for consistently discussing a number of applications such diverse as electric resistance networks, estimation of land prices, urban planning, linguistic databases, music, and gene expression regulatory networks.