Download or read book Nonlinear Stochastic PDEs written by Tadahisa Funaki and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: This IMA Volume in Mathematics and its Applications NONLINEAR STOCHASTIC PDEs: HYDRODYNAMIC LIMIT AND BURGERS' TURBULENCE is based on the proceedings of the period of concentration on Stochas tic Methods for Nonlinear PDEs which was an integral part of the 1993- 94 IMA program on "Emerging Applications of Probability." We thank Tadahisa Funaki and Wojbor A. Woyczynski for organizing this meeting and for editing the proceedings. We also take this opportunity to thank the National Science Foundation and the Army Research Office, whose financial support made this workshop possible. A vner Friedman Willard Miller, Jr. xiii PREFACE A workshop on Nonlinear Stochastic Partial Differential Equations was held during the week of March 21 at the Institute for Mathematics and Its Applications at the University of Minnesota. It was part of the Special Year on Emerging Applications of Probability program put together by an organizing committee chaired by J. Michael Steele. The selection of topics reflected personal interests of the organizers with two areas of emphasis: the hydrodynamic limit problems and Burgers' turbulence and related models. The talks and the papers appearing in this volume reflect a number of research directions that are currently pursued in these areas.
Download or read book Stochastic Partial Differential Equations Second Edition written by Pao-Liu Chow and published by CRC Press. This book was released on 2014-12-10 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore Theory and Techniques to Solve Physical, Biological, and Financial Problems Since the first edition was published, there has been a surge of interest in stochastic partial differential equations (PDEs) driven by the Lévy type of noise. Stochastic Partial Differential Equations, Second Edition incorporates these recent developments and improves the presentation of material. New to the Second Edition Two sections on the Lévy type of stochastic integrals and the related stochastic differential equations in finite dimensions Discussions of Poisson random fields and related stochastic integrals, the solution of a stochastic heat equation with Poisson noise, and mild solutions to linear and nonlinear parabolic equations with Poisson noises Two sections on linear and semilinear wave equations driven by the Poisson type of noises Treatment of the Poisson stochastic integral in a Hilbert space and mild solutions of stochastic evolutions with Poisson noises Revised proofs and new theorems, such as explosive solutions of stochastic reaction diffusion equations Additional applications of stochastic PDEs to population biology and finance Updated section on parabolic equations and related elliptic problems in Gauss–Sobolev spaces The book covers basic theory as well as computational and analytical techniques to solve physical, biological, and financial problems. It first presents classical concrete problems before proceeding to a unified theory of stochastic evolution equations and describing applications, such as turbulence in fluid dynamics, a spatial population growth model in a random environment, and a stochastic model in bond market theory. The author also explores the connection of stochastic PDEs to infinite-dimensional stochastic analysis.
Download or read book Nonlinear Partial Differential Equations with Applications written by Tomás Roubicek and published by Springer Science & Business Media. This book was released on 2006-01-17 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book primarily concerns quasilinear and semilinear elliptic and parabolic partial differential equations, inequalities, and systems. The exposition quickly leads general theory to analysis of concrete equations, which have specific applications in such areas as electrically (semi-) conductive media, modeling of biological systems, and mechanical engineering. Methods of Galerkin or of Rothe are exposed in a large generality.
Download or read book Stochastic Partial Differential Equations and Related Fields written by Andreas Eberle and published by Springer. This book was released on 2018-07-03 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Festschrift contains five research surveys and thirty-four shorter contributions by participants of the conference ''Stochastic Partial Differential Equations and Related Fields'' hosted by the Faculty of Mathematics at Bielefeld University, October 10–14, 2016. The conference, attended by more than 140 participants, including PostDocs and PhD students, was held both to honor Michael Röckner's contributions to the field on the occasion of his 60th birthday and to bring together leading scientists and young researchers to present the current state of the art and promising future developments. Each article introduces a well-described field related to Stochastic Partial Differential Equations and Stochastic Analysis in general. In particular, the longer surveys focus on Dirichlet forms and Potential theory, the analysis of Kolmogorov operators, Fokker–Planck equations in Hilbert spaces, the theory of variational solutions to stochastic partial differential equations, singular stochastic partial differential equations and their applications in mathematical physics, as well as on the theory of regularity structures and paracontrolled distributions. The numerous research surveys make the volume especially useful for graduate students and researchers who wish to start work in the above-mentioned areas, or who want to be informed about the current state of the art.
Download or read book Backward Stochastic Differential Equations written by Jianfeng Zhang and published by Springer. This book was released on 2017-08-22 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a systematic and accessible approach to stochastic differential equations, backward stochastic differential equations, and their connection with partial differential equations, as well as the recent development of the fully nonlinear theory, including nonlinear expectation, second order backward stochastic differential equations, and path dependent partial differential equations. Their main applications and numerical algorithms, as well as many exercises, are included. The book focuses on ideas and clarity, with most results having been solved from scratch and most theories being motivated from applications. It can be considered a starting point for junior researchers in the field, and can serve as a textbook for a two-semester graduate course in probability theory and stochastic analysis. It is also accessible for graduate students majoring in financial engineering.
Download or read book Nonlinear PDEs written by Marius Ghergu and published by Springer Science & Business Media. This book was released on 2011-10-21 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: The emphasis throughout the present volume is on the practical application of theoretical mathematical models helping to unravel the underlying mechanisms involved in processes from mathematical physics and biosciences. It has been conceived as a unique collection of abstract methods dealing especially with nonlinear partial differential equations (either stationary or evolutionary) that are applied to understand concrete processes involving some important applications related to phenomena such as: boundary layer phenomena for viscous fluids, population dynamics,, dead core phenomena, etc. It addresses researchers and post-graduate students working at the interplay between mathematics and other fields of science and technology and is a comprehensive introduction to the theory of nonlinear partial differential equations and its main principles also presents their real-life applications in various contexts: mathematical physics, chemistry, mathematical biology, and population genetics. Based on the authors' original work, this volume provides an overview of the field, with examples suitable for researchers but also for graduate students entering research. The method of presentation appeals to readers with diverse backgrounds in partial differential equations and functional analysis. Each chapter includes detailed heuristic arguments, providing thorough motivation for the material developed later in the text. The content demonstrates in a firm way that partial differential equations can be used to address a large variety of phenomena occurring in and influencing our daily lives. The extensive reference list and index make this book a valuable resource for researchers working in a variety of fields and who are interested in phenomena modeled by nonlinear partial differential equations.
Download or read book Stochastic Evolution Systems written by Boris L. Rozovsky and published by Springer. This book was released on 2018-10-03 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph, now in a thoroughly revised second edition, develops the theory of stochastic calculus in Hilbert spaces and applies the results to the study of generalized solutions of stochastic parabolic equations. The emphasis lies on second-order stochastic parabolic equations and their connection to random dynamical systems. The authors further explore applications to the theory of optimal non-linear filtering, prediction, and smoothing of partially observed diffusion processes. The new edition now also includes a chapter on chaos expansion for linear stochastic evolution systems. This book will appeal to anyone working in disciplines that require tools from stochastic analysis and PDEs, including pure mathematics, financial mathematics, engineering and physics.
Download or read book Applied Stochastic Differential Equations written by Simo Särkkä and published by Cambridge University Press. This book was released on 2019-05-02 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.
Download or read book Nonlinear Expectations and Stochastic Calculus under Uncertainty written by Shige Peng and published by Springer Nature. This book was released on 2019-09-09 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is focused on the recent developments on problems of probability model uncertainty by using the notion of nonlinear expectations and, in particular, sublinear expectations. It provides a gentle coverage of the theory of nonlinear expectations and related stochastic analysis. Many notions and results, for example, G-normal distribution, G-Brownian motion, G-Martingale representation theorem, and related stochastic calculus are first introduced or obtained by the author. This book is based on Shige Peng’s lecture notes for a series of lectures given at summer schools and universities worldwide. It starts with basic definitions of nonlinear expectations and their relation to coherent measures of risk, law of large numbers and central limit theorems under nonlinear expectations, and develops into stochastic integral and stochastic calculus under G-expectations. It ends with recent research topic on G-Martingale representation theorem and G-stochastic integral for locally integrable processes. With exercises to practice at the end of each chapter, this book can be used as a graduate textbook for students in probability theory and mathematical finance. Each chapter also concludes with a section Notes and Comments, which gives history and further references on the material covered in that chapter. Researchers and graduate students interested in probability theory and mathematical finance will find this book very useful.
Download or read book Controlled Markov Processes and Viscosity Solutions written by Wendell H. Fleming and published by Springer Science & Business Media. This book was released on 2006-02-04 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to optimal stochastic control for continuous time Markov processes and the theory of viscosity solutions. It covers dynamic programming for deterministic optimal control problems, as well as to the corresponding theory of viscosity solutions. New chapters in this second edition introduce the role of stochastic optimal control in portfolio optimization and in pricing derivatives in incomplete markets and two-controller, zero-sum differential games.
Download or read book Stochastic Partial Differential Equations written by Étienne Pardoux and published by Springer Nature. This book was released on 2021-10-25 with total page 74 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a concise introduction to the classical theory of stochastic partial differential equations (SPDEs). It begins by describing the classes of equations which are studied later in the book, together with a list of motivating examples of SPDEs which are used in physics, population dynamics, neurophysiology, finance and signal processing. The central part of the book studies SPDEs as infinite-dimensional SDEs, based on the variational approach to PDEs. This extends both the classical Itô formulation and the martingale problem approach due to Stroock and Varadhan. The final chapter considers the solution of a space-time white noise-driven SPDE as a real-valued function of time and (one-dimensional) space. The results of J. Walsh's St Flour notes on the existence, uniqueness and Hölder regularity of the solution are presented. In addition, conditions are given under which the solution remains nonnegative, and the Malliavin calculus is applied. Lastly, reflected SPDEs and their connection with super Brownian motion are considered. At a time when new sophisticated branches of the subject are being developed, this book will be a welcome reference on classical SPDEs for newcomers to the theory.
Download or read book Backward Stochastic Differential Equations written by N El Karoui and published by CRC Press. This book was released on 1997-01-17 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the texts of seminars presented during the years 1995 and 1996 at the Université Paris VI and is the first attempt to present a survey on this subject. Starting from the classical conditions for existence and unicity of a solution in the most simple case-which requires more than basic stochartic calculus-several refinements on the hypotheses are introduced to obtain more general results.
Download or read book Effective Dynamics of Stochastic Partial Differential Equations written by Jinqiao Duan and published by Elsevier. This book was released on 2014-03-06 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: Effective Dynamics of Stochastic Partial Differential Equations focuses on stochastic partial differential equations with slow and fast time scales, or large and small spatial scales. The authors have developed basic techniques, such as averaging, slow manifolds, and homogenization, to extract effective dynamics from these stochastic partial differential equations. The authors' experience both as researchers and teachers enable them to convert current research on extracting effective dynamics of stochastic partial differential equations into concise and comprehensive chapters. The book helps readers by providing an accessible introduction to probability tools in Hilbert space and basics of stochastic partial differential equations. Each chapter also includes exercises and problems to enhance comprehension. - New techniques for extracting effective dynamics of infinite dimensional dynamical systems under uncertainty - Accessible introduction to probability tools in Hilbert space and basics of stochastic partial differential equations - Solutions or hints to all Exercises
Download or read book A Minicourse on Stochastic Partial Differential Equations written by Robert C. Dalang and published by Springer Science & Business Media. This book was released on 2009 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title contains lectures that offer an introduction to modern topics in stochastic partial differential equations and bring together experts whose research is centered on the interface between Gaussian analysis, stochastic analysis, and stochastic PDEs.
Download or read book An Introduction to Computational Stochastic PDEs written by Gabriel J. Lord and published by Cambridge University Press. This book was released on 2014-08-11 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a practical presentation of stochastic partial differential equations arising in physical applications and their numerical approximation.
Download or read book Nonlinear Partial Differential Equations for Future Applications written by Shigeaki Koike and published by Springer. This book was released on 2022-04-17 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume features selected, original, and peer-reviewed papers on topics from a series of workshops on Nonlinear Partial Differential Equations for Future Applications that were held in 2017 at Tohoku University in Japan. The contributions address an abstract maximal regularity with applications to parabolic equations, stability, and bifurcation for viscous compressible Navier–Stokes equations, new estimates for a compressible Gross–Pitaevskii–Navier–Stokes system, singular limits for the Keller–Segel system in critical spaces, the dynamic programming principle for stochastic optimal control, two kinds of regularity machineries for elliptic obstacle problems, and new insight on topology of nodal sets of high-energy eigenfunctions of the Laplacian. This book aims to exhibit various theories and methods that appear in the study of nonlinear partial differential equations.
Download or read book Nonlinear Stochastic Operator Equations written by George Adomian and published by Academic Press. This book was released on 2014-05-09 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear Stochastic Operator Equations deals with realistic solutions of the nonlinear stochastic equations arising from the modeling of frontier problems in many fields of science. This book also discusses a wide class of equations to provide modeling of problems concerning physics, engineering, operations research, systems analysis, biology, medicine. This text discusses operator equations and the decomposition method. This book also explains the limitations, restrictions and assumptions made in differential equations involving stochastic process coefficients (the stochastic operator case), which yield results very different from the needs of the actual physical problem. Real-world application of mathematics to actual physical problems, requires making a reasonable model that is both realistic and solvable. The decomposition approach or model is an approximation method to solve a wide range of problems. This book explains an inherent feature of real systems—known as nonlinear behavior—that occurs frequently in nuclear reactors, in physiological systems, or in cellular growth. This text also discusses stochastic operator equations with linear boundary conditions. This book is intended for students with a mathematics background, particularly senior undergraduate and graduate students of advanced mathematics, of the physical or engineering sciences.