Download or read book Some Nonlinear Problems in Riemannian Geometry written by Thierry Aubin and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with such important subjects as variational methods, the continuity method, parabolic equations on fiber bundles, ideas concerning points of concentration, blowing-up technique, geometric and topological methods. It explores important geometric problems that are of interest to many mathematicians and scientists but have only recently been partially solved.
Download or read book Nonlinear Problems of Elasticity written by Stuart Antman and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 762 pages. Available in PDF, EPUB and Kindle. Book excerpt: The scientists of the seventeenth and eighteenth centuries, led by Jas. Bernoulli and Euler, created a coherent theory of the mechanics of strings and rods undergoing planar deformations. They introduced the basic con cepts of strain, both extensional and flexural, of contact force with its com ponents of tension and shear force, and of contact couple. They extended Newton's Law of Motion for a mass point to a law valid for any deformable body. Euler formulated its independent and much subtler complement, the Angular Momentum Principle. (Euler also gave effective variational characterizations of the governing equations. ) These scientists breathed life into the theory by proposing, formulating, and solving the problems of the suspension bridge, the catenary, the velaria, the elastica, and the small transverse vibrations of an elastic string. (The level of difficulty of some of these problems is such that even today their descriptions are sel dom vouchsafed to undergraduates. The realization that such profound and beautiful results could be deduced by mathematical reasoning from fundamental physical principles furnished a significant contribution to the intellectual climate of the Age of Reason. ) At first, those who solved these problems did not distinguish between linear and nonlinear equations, and so were not intimidated by the latter. By the middle of the nineteenth century, Cauchy had constructed the basic framework of three-dimensional continuum mechanics on the founda tions built by his eighteenth-century predecessors.
Download or read book Newton Methods for Nonlinear Problems written by Peter Deuflhard and published by Springer Science & Business Media. This book was released on 2005-01-13 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with the efficient numerical solution of challenging nonlinear problems in science and engineering, both in finite and in infinite dimension. Its focus is on local and global Newton methods for direct problems or Gauss-Newton methods for inverse problems. Lots of numerical illustrations, comparison tables, and exercises make the text useful in computational mathematics classes. At the same time, the book opens many directions for possible future research.
Download or read book Linear and Nonlinear Inverse Problems with Practical Applications written by Jennifer L. Mueller and published by SIAM. This book was released on 2012-11-30 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inverse problems arise in practical applications whenever there is a need to interpret indirect measurements. This book explains how to identify ill-posed inverse problems arising in practice and gives a hands-on guide to designing computational solution methods for them, with related codes on an accompanying website. The guiding linear inversion examples are the problem of image deblurring, x-ray tomography, and backward parabolic problems, including heat transfer. A thorough treatment of electrical impedance tomography is used as the guiding nonlinear inversion example which combines the analytic-geometric research tradition and the regularization-based school of thought in a fruitful manner. This book is complete with exercises and project topics, making it ideal as a classroom textbook or self-study guide for graduate and advanced undergraduate students in mathematics, engineering or physics who wish to learn about computational inversion. It also acts as a useful guide for researchers who develop inversion techniques in high-tech industry.
Download or read book Modeling Nonlinear Problems in the Mechanics of Strings and Rods written by Oliver M. O'Reilly and published by Springer. This book was released on 2017-03-10 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents theories of deformable elastic strings and rods and their application to broad classes of problems. Readers will gain insights into the formulation and analysis of models for mechanical and biological systems. Emphasis is placed on how the balance laws interplay with constitutive relations to form a set of governing equations. For certain classes of problems, it is shown how a balance of material momentum can play a key role in forming the equations of motion. The first half of the book is devoted to the purely mechanical theory of a string and its applications. The second half of the book is devoted to rod theories, including Euler’s theory of the elastica, Kirchhoff ’s theory of an elastic rod, and a range of Cosserat rod theories. A variety of classic and recent applications of these rod theories are examined. Two supplemental chapters, the first on continuum mechanics of three-dimensional continua and the second on methods from variational calculus, are included to provide relevant background for students. This book is suited for graduate-level courses on the dynamics of nonlinearly elastic rods and strings.
Download or read book Nonlinear Problems with Lack of Compactness written by Giovanni Molica Bisci and published by Walter de Gruyter GmbH & Co KG. This book was released on 2021-02-08 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This authoritative book presents recent research results on nonlinear problems with lack of compactness. The topics covered include several nonlinear problems in the Euclidean setting as well as variational problems on manifolds. The combination of deep techniques in nonlinear analysis with applications to a variety of problems make this work an essential source of information for researchers and graduate students working in analysis and PDE's.
Download or read book An Introduction to Nonlinear Functional Analysis and Elliptic Problems written by Antonio Ambrosetti and published by Springer Science & Business Media. This book was released on 2011-07-19 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained textbook provides the basic, abstract tools used in nonlinear analysis and their applications to semilinear elliptic boundary value problems and displays how various approaches can easily be applied to a range of model cases. Complete with a preliminary chapter, an appendix that includes further results on weak derivatives, and chapter-by-chapter exercises, this book is a practical text for an introductory course or seminar on nonlinear functional analysis.
Download or read book Numerical Methods for Nonlinear Variational Problems written by Roland Glowinski and published by Springer. This book was released on 2013-10-03 with total page 493 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the mathematical background and reviews the techniques for solving problems, including those that require large computations such as transonic flows for compressible fluids and the Navier-Stokes equations for incompressible viscous fluids. Finite element approximations and non-linear relaxation, and nonlinear least square methods are all covered in detail, as are many applications. This volume is a classic in a long-awaited softcover re-edition.
Download or read book An Introduction to Nonlinear Partial Differential Equations written by J. David Logan and published by John Wiley & Sons. This book was released on 2008-04-11 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the First Edition: "This book is well conceived and well written. The author has succeeded in producing a text on nonlinear PDEs that is not only quite readable but also accessible to students from diverse backgrounds." —SIAM Review A practical introduction to nonlinear PDEs and their real-world applications Now in a Second Edition, this popular book on nonlinear partial differential equations (PDEs) contains expanded coverage on the central topics of applied mathematics in an elementary, highly readable format and is accessible to students and researchers in the field of pure and applied mathematics. This book provides a new focus on the increasing use of mathematical applications in the life sciences, while also addressing key topics such as linear PDEs, first-order nonlinear PDEs, classical and weak solutions, shocks, hyperbolic systems, nonlinear diffusion, and elliptic equations. Unlike comparable books that typically only use formal proofs and theory to demonstrate results, An Introduction to Nonlinear Partial Differential Equations, Second Edition takes a more practical approach to nonlinear PDEs by emphasizing how the results are used, why they are important, and how they are applied to real problems. The intertwining relationship between mathematics and physical phenomena is discovered using detailed examples of applications across various areas such as biology, combustion, traffic flow, heat transfer, fluid mechanics, quantum mechanics, and the chemical reactor theory. New features of the Second Edition also include: Additional intermediate-level exercises that facilitate the development of advanced problem-solving skills New applications in the biological sciences, including age-structure, pattern formation, and the propagation of diseases An expanded bibliography that facilitates further investigation into specialized topics With individual, self-contained chapters and a broad scope of coverage that offers instructors the flexibility to design courses to meet specific objectives, An Introduction to Nonlinear Partial Differential Equations, Second Edition is an ideal text for applied mathematics courses at the upper-undergraduate and graduate levels. It also serves as a valuable resource for researchers and professionals in the fields of mathematics, biology, engineering, and physics who would like to further their knowledge of PDEs.
Download or read book Numerical Methods for Unconstrained Optimization and Nonlinear Equations written by J. E. Dennis, Jr. and published by SIAM. This book was released on 1996-12-01 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has become the standard for a complete, state-of-the-art description of the methods for unconstrained optimization and systems of nonlinear equations. Originally published in 1983, it provides information needed to understand both the theory and the practice of these methods and provides pseudocode for the problems. The algorithms covered are all based on Newton's method or "quasi-Newton" methods, and the heart of the book is the material on computational methods for multidimensional unconstrained optimization and nonlinear equation problems. The republication of this book by SIAM is driven by a continuing demand for specific and sound advice on how to solve real problems. The level of presentation is consistent throughout, with a good mix of examples and theory, making it a valuable text at both the graduate and undergraduate level. It has been praised as excellent for courses with approximately the same name as the book title and would also be useful as a supplemental text for a nonlinear programming or a numerical analysis course. Many exercises are provided to illustrate and develop the ideas in the text. A large appendix provides a mechanism for class projects and a reference for readers who want the details of the algorithms. Practitioners may use this book for self-study and reference. For complete understanding, readers should have a background in calculus and linear algebra. The book does contain background material in multivariable calculus and numerical linear algebra.
Download or read book Nonlinear Problems in Abstract Cones written by Dajun Guo and published by Academic Press. This book was released on 2014-05-10 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: Notes and Reports in Mathematics in Science and Engineering, Volume 5: Nonlinear Problems in Abstract Cones presents the investigation of nonlinear problems in abstract cones. This book uses the theory of cones coupled with the fixed point index to investigate positive fixed points of various classes of nonlinear operators. Organized into four chapters, this volume begins with an overview of the fundamental properties of cones coupled with the fixed point index. This text then employs the fixed point theory developed to discuss positive solutions of nonlinear integral equations. Other chapters consider several examples from integral and differential equations to illustrate the abstract results. This book discusses as well the fixed points of increasing and decreasing operators. The final chapter deals with the development of the theory of nonlinear differential equations in cones. This book is a valuable resource for graduate students in mathematics. Mathematicians and researchers will also find this book useful.
Download or read book The Nonlinear Diffusion Equation written by J.M. Burgers and published by Springer Science & Business Media. This book was released on 2013-12-11 with total page 183 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the 'Introduction' to the main text gives an account of the way in which the problems treated in the following pages originated, this 'Preface' may be limited to an acknowledgement of the support the work has received. It started during the pe riod when I was professor of aero- and hydrodynamics at the Technical University in Delft, Netherlands, and many discussions with colleagues ha ve in:fluenced its devel opment. Oftheir names I mention here only that ofH. A. Kramers. Papers No. 1-13 ofthe list given at the end ofthe text were written during that period. Severa! ofthese were attempts to explore ideas which later had to be abandoned, but gradually a line of thought emerged which promised more definite results. This line began to come to the foreground in pa per No. 3 (1939}, while a preliminary formulation ofthe results was given in paper No. 12 (1954}. At that time, however, there still was missing a practica! method for manipulating a certain distribution function of central interest. A six months stay at the Hydrodynamics Laboratories ofthe California Institute of Technology, Pasadena, California (1950-1951}, was supported by a Contract with the Department of the Air F orce, N o. AF 33(038}-17207. A course of lectures was given during this period, which were published in typescript under the title 'On Turbulent Fluid Motion', as Report No. E-34. 1, July 1951, of the Hydrodynamics Laboratory.
Download or read book Solving Nonlinear Equations with Newton s Method written by C. T. Kelley and published by SIAM. This book was released on 2003-01-01 with total page 117 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book on Newton's method is a user-oriented guide to algorithms and implementation. In just over 100 pages, it shows, via algorithms in pseudocode, in MATLAB, and with several examples, how one can choose an appropriate Newton-type method for a given problem, diagnose problems, and write an efficient solver or apply one written by others. It contains trouble-shooting guides to the major algorithms, their most common failure modes, and the likely causes of failure. It also includes many worked-out examples (available on the SIAM website) in pseudocode and a collection of MATLAB codes, allowing readers to experiment with the algorithms easily and implement them in other languages.
Download or read book Lobachevsky Geometry and Modern Nonlinear Problems written by Andrey Popov and published by Springer. This book was released on 2014-08-06 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents the basic concepts of hyperbolic Lobachevsky geometry and their possible applications to modern nonlinear applied problems in mathematics and physics, summarizing the findings of roughly the last hundred years. The central sections cover the classical building blocks of hyperbolic Lobachevsky geometry, pseudo spherical surfaces theory, net geometrical investigative techniques of nonlinear differential equations in partial derivatives, and their applications to the analysis of the physical models. As the sine-Gordon equation appears to have profound “geometrical roots” and numerous applications to modern nonlinear problems, it is treated as a universal “object” of investigation, connecting many of the problems discussed. The aim of this book is to form a general geometrical view on the different problems of modern mathematics, physics and natural science in general in the context of non-Euclidean hyperbolic geometry.
Download or read book Nonlinear Problems Present and Future written by A. Bishop and published by Elsevier. This book was released on 1982-01-01 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear Problems: Present and Future
Download or read book Problems of Nonlinear Deformation written by E.I. Grigolyuk and published by Springer Science & Business Media. This book was released on 1991-09-30 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: Interest in nonlinear problems in mechanics has been revived and intensified by the capacity of digital computers. Consequently, a question offundamental importance is the development of solution procedures which can be applied to a large class of problems. Nonlinear problems with a parameter constitute one such class. An important aspect of these problems is, as a rule, a question of the variation of the solution when the parameter is varied. Hence, the method of continuing the solution with respect to a parameter is a natural and, to a certain degree, universal tool for analysis. This book includes details of practical problems and the results of applying this method to a certain class of nonlinear problems in the field of deformable solid mechanics. In the Introduction, two forms of the method are presented, namely continu ous continuation, based on the integration of a Cauchy problem with respect to a parameter using explicit schemes, and discrete continuation, implementing step wise processes with respect to a parameter with the iterative improvement of the solution at each step. Difficulties which arise in continuing the solution in the neighbourhood of singular points are discussed and the problem of choosing the continuation parameter is formulated.
Download or read book Harmonic Balance for Nonlinear Vibration Problems written by Malte Krack and published by Springer. This book was released on 2019-03-23 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents an introduction to Harmonic Balance for nonlinear vibration problems, covering the theoretical basis, its application to mechanical systems, and its computational implementation. Harmonic Balance is an approximation method for the computation of periodic solutions of nonlinear ordinary and differential-algebraic equations. It outperforms numerical forward integration in terms of computational efficiency often by several orders of magnitude. The method is widely used in the analysis of nonlinear systems, including structures, fluids and electric circuits. The book includes solved exercises which illustrate the advantages of Harmonic Balance over alternative methods as well as its limitations. The target audience primarily comprises graduate and post-graduate students, but the book may also be beneficial for research experts and practitioners in industry.