EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Non linear and Non stationary Time Series Analysis

Download or read book Non linear and Non stationary Time Series Analysis written by Maurice Bertram Priestley and published by . This book was released on 1988 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nonlinear Time Series Analysis

Download or read book Nonlinear Time Series Analysis written by Ruey S. Tsay and published by John Wiley & Sons. This book was released on 2018-09-13 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive resource that draws a balance between theory and applications of nonlinear time series analysis Nonlinear Time Series Analysis offers an important guide to both parametric and nonparametric methods, nonlinear state-space models, and Bayesian as well as classical approaches to nonlinear time series analysis. The authors—noted experts in the field—explore the advantages and limitations of the nonlinear models and methods and review the improvements upon linear time series models. The need for this book is based on the recent developments in nonlinear time series analysis, statistical learning, dynamic systems and advanced computational methods. Parametric and nonparametric methods and nonlinear and non-Gaussian state space models provide a much wider range of tools for time series analysis. In addition, advances in computing and data collection have made available large data sets and high-frequency data. These new data make it not only feasible, but also necessary to take into consideration the nonlinearity embedded in most real-world time series. This vital guide: • Offers research developed by leading scholars of time series analysis • Presents R commands making it possible to reproduce all the analyses included in the text • Contains real-world examples throughout the book • Recommends exercises to test understanding of material presented • Includes an instructor solutions manual and companion website Written for students, researchers, and practitioners who are interested in exploring nonlinearity in time series, Nonlinear Time Series Analysis offers a comprehensive text that explores the advantages and limitations of the nonlinear models and methods and demonstrates the improvements upon linear time series models.

Book Nonlinear Time Series Analysis

Download or read book Nonlinear Time Series Analysis written by Holger Kantz and published by Cambridge University Press. This book was released on 2004 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: The paradigm of deterministic chaos has influenced thinking in many fields of science. Chaotic systems show rich and surprising mathematical structures. In the applied sciences, deterministic chaos provides a striking explanation for irregular behaviour and anomalies in systems which do not seem to be inherently stochastic. The most direct link between chaos theory and the real world is the analysis of time series from real systems in terms of nonlinear dynamics. Experimental technique and data analysis have seen such dramatic progress that, by now, most fundamental properties of nonlinear dynamical systems have been observed in the laboratory. Great efforts are being made to exploit ideas from chaos theory wherever the data displays more structure than can be captured by traditional methods. Problems of this kind are typical in biology and physiology but also in geophysics, economics, and many other sciences.

Book Nonlinear Nonstationary Time Series Analysis and Its Application

Download or read book Nonlinear Nonstationary Time Series Analysis and Its Application written by Yoichi Arai and published by . This book was released on 2004 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nonlinear Time Series

Download or read book Nonlinear Time Series written by Randal Douc and published by CRC Press. This book was released on 2014-01-06 with total page 548 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text emphasizes nonlinear models for a course in time series analysis. After introducing stochastic processes, Markov chains, Poisson processes, and ARMA models, the authors cover functional autoregressive, ARCH, threshold AR, and discrete time series models as well as several complementary approaches. They discuss the main limit theorems for Markov chains, useful inequalities, statistical techniques to infer model parameters, and GLMs. Moving on to HMM models, the book examines filtering and smoothing, parametric and nonparametric inference, advanced particle filtering, and numerical methods for inference.

Book Topics In Nonlinear Time Series Analysis  With Implications For Eeg Analysis

Download or read book Topics In Nonlinear Time Series Analysis With Implications For Eeg Analysis written by Andreas Galka and published by World Scientific. This book was released on 2000-02-18 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a thorough review of a class of powerful algorithms for the numerical analysis of complex time series data which were obtained from dynamical systems. These algorithms are based on the concept of state space representations of the underlying dynamics, as introduced by nonlinear dynamics. In particular, current algorithms for state space reconstruction, correlation dimension estimation, testing for determinism and surrogate data testing are presented — algorithms which have been playing a central role in the investigation of deterministic chaos and related phenomena since 1980. Special emphasis is given to the much-disputed issue whether these algorithms can be successfully employed for the analysis of the human electroencephalogram.

Book Nonlinear and Nonstationary Signal Processing

Download or read book Nonlinear and Nonstationary Signal Processing written by W. J. Fitzgerald and published by Cambridge University Press. This book was released on 2000 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: Signal processing, nonlinear data analysis, nonlinear time series, nonstationary processes.

Book Nonlinear Time Series Analysis with R

Download or read book Nonlinear Time Series Analysis with R written by Ray G. Huffaker and published by Oxford University Press. This book was released on 2017 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear Time Series Analysis with R provides a practical guide to emerging empirical techniques allowing practitioners to diagnose whether highly fluctuating and random appearing data are most likely driven by random or deterministic dynamic forces. Practitioners become 'data detectives' accumulating hard empirical evidence supporting their choice of a modelling approach corresponding to reality. The book is targeted to non-mathematicians with limitedknowledge of nonlinear dynamics; in particular, professionals and graduate students in engineering and the biophysical and social sciences. The book makes readers active learners with hands-on computerexperiments in R code directing them through Nonlinear Time Series Analysis (NLTS). The computer code is explained in detail so that readers can adjust it for use in their own work. The book also provides readers with an explicit framework--condensed from sound empirical practices recommended in the literature--that details a step-by-step procedure for applying NLTS in real-world data diagnostics.

Book Dynamics and Control of Energy Systems

Download or read book Dynamics and Control of Energy Systems written by Achintya Mukhopadhyay and published by Springer Nature. This book was released on 2019-10-14 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent advances in dynamics and control of different types of energy systems. It covers research on dynamics and control in energy systems from different aspects, namely, combustion, multiphase flow, nuclear, chemical and thermal. The chapters start from the basic concepts so that this book can be useful even for researchers with very little background in the area. A dedicated chapter provides an overview on the fundamental aspects of the dynamical systems approach. The book will be of use to researchers and professionals alike.

Book Time Series Analysis and Its Applications

Download or read book Time Series Analysis and Its Applications written by Robert H. Shumway and published by . This book was released on 2014-01-15 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Using R for Principles of Econometrics

Download or read book Using R for Principles of Econometrics written by Constantin Colonescu and published by Lulu.com. This book was released on 2017-12-28 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a beginner's guide to applied econometrics using the free statistics software R. It provides and explains R solutions to most of the examples in 'Principles of Econometrics' by Hill, Griffiths, and Lim, fourth edition. 'Using R for Principles of Econometrics' requires no previous knowledge in econometrics or R programming, but elementary notions of statistics are helpful.

Book Time Series Analysis and Its Applications

Download or read book Time Series Analysis and Its Applications written by Robert H. Shumway and published by Springer Science & Business Media. This book was released on 2006-10-12 with total page 589 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition marks a substantial change to the ?rst edition. P- haps the most signi?cant change is the introduction of examples based on the freeware R package. The package, which runs on most operating systems, can be downloaded from The Comprehensive R Archive Network (CRAN) at http://cran. r-project. org/ or any one of its mirrors. Readers who have experience with the S-PLUS R package will have no problem working with R. For novices, R installs some help manuals, and CRAN supplies links to contributed tutorials such as R for Beginners. In our examples, we assume the reader has downloaded and installed R and has downloaded the nec- sary data ?les. The data ?les can be downloaded from the website for the text,http://www. stat. pitt. edu/stoffer/tsa2/ or any one of its mirrors. We will also provide additional code and other information of interest on the text’s website. Most of the material that would be given in an introductory course on time series analysis has associated R code. Although examples are given in R, the material is not R-dependent. In courses we have given using a preliminary version of the new edition of the text, students were allowed to use any package of preference. Although most students used R (or S-PLUS), a number of them completed the course successfully using other programs such R R R as ASTSA, MATLAB ,SAS , and SPSS . Another substantial change from the ?rst edition is that the material has beendividedintosmallerchapters.

Book Forecasting  principles and practice

Download or read book Forecasting principles and practice written by Rob J Hyndman and published by OTexts. This book was released on 2018-05-08 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.

Book Time Series Analysis

Download or read book Time Series Analysis written by Jonathan D. Cryer and published by Springer Science & Business Media. This book was released on 2008-04-04 with total page 501 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents an accessible approach to understanding time series models and their applications. The ideas and methods are illustrated with both real and simulated data sets. A unique feature of this edition is its integration with the R computing environment.

Book Handbook of Time Series Analysis

Download or read book Handbook of Time Series Analysis written by Björn Schelter and published by John Wiley & Sons. This book was released on 2006-12-13 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook provides an up-to-date survey of current research topics and applications of time series analysis methods written by leading experts in their fields. It covers recent developments in univariate as well as bivariate and multivariate time series analysis techniques ranging from physics' to life sciences' applications. Each chapter comprises both methodological aspects and applications to real world complex systems, such as the human brain or Earth's climate. Covering an exceptionally broad spectrum of topics, beginners, experts and practitioners who seek to understand the latest developments will profit from this handbook.

Book Hilbert huang Transform And Its Applications  2nd Edition

Download or read book Hilbert huang Transform And Its Applications 2nd Edition written by Norden E Huang and published by World Scientific. This book was released on 2014-04-22 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is written for scientists and engineers who use HHT (Hilbert-Huang Transform) to analyze data from nonlinear and non-stationary processes. It can be treated as a HHT user manual and a source of reference for HHT applications. The book contains the basic principle and method of HHT and various application examples, ranging from the correction of satellite orbit drifting to detection of failure of highway bridges.The thirteen chapters of the first edition are based on the presentations made at a mini-symposium at the Society for Industrial and Applied Mathematics in 2003. Some outstanding mathematical research problems regarding HHT development are discussed in the first three chapters. The three new chapters of the second edition reflect the latest HHT development, including ensemble empirical mode decomposition (EEMD) and modified EMD.The book also provides a platform for researchers to develop the HHT method further and to identify more applications.

Book Modelling Nonlinear Economic Time Series

Download or read book Modelling Nonlinear Economic Time Series written by Timo Teräsvirta and published by OUP Oxford. This book was released on 2010-12-16 with total page 592 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains an extensive up-to-date overview of nonlinear time series models and their application to modelling economic relationships. It considers nonlinear models in stationary and nonstationary frameworks, and both parametric and nonparametric models are discussed. The book contains examples of nonlinear models in economic theory and presents the most common nonlinear time series models. Importantly, it shows the reader how to apply these models in practice. For thispurpose, the building of various nonlinear models with its three stages of model building: specification, estimation and evaluation, is discussed in detail and is illustrated by several examples involving both economic and non-economic data. Since estimation of nonlinear time series models is carried outusing numerical algorithms, the book contains a chapter on estimating parametric nonlinear models and another on estimating nonparametric ones.Forecasting is a major reason for building time series models, linear or nonlinear. The book contains a discussion on forecasting with nonlinear models, both parametric and nonparametric, and considers numerical techniques necessary for computing multi-period forecasts from them. The main focus of the book is on models of the conditional mean, but models of the conditional variance, mainly those of autoregressive conditional heteroskedasticity, receive attention as well. A separate chapter isdevoted to state space models. As a whole, the book is an indispensable tool for researchers interested in nonlinear time series and is also suitable for teaching courses in econometrics and time series analysis.