EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Nonlinear Laser Dynamics

    Book Details:
  • Author : Kathy Lüdge
  • Publisher : John Wiley & Sons
  • Release : 2012-04-09
  • ISBN : 3527639837
  • Pages : 412 pages

Download or read book Nonlinear Laser Dynamics written by Kathy Lüdge and published by John Wiley & Sons. This book was released on 2012-04-09 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: A distinctive discussion of the nonlinear dynamical phenomena of semiconductor lasers. The book combines recent results of quantum dot laser modeling with mathematical details and an analytic understanding of nonlinear phenomena in semiconductor lasers and points out possible applications of lasers in cryptography and chaos control. This interdisciplinary approach makes it a unique and powerful source of knowledge for anyone intending to contribute to this field of research. By presenting both experimental and theoretical results, the distinguished authors consider solitary lasers with nano-structured material, as well as integrated devices with complex feedback sections. In so doing, they address such topics as the bifurcation theory of systems with time delay, analysis of chaotic dynamics, and the modeling of quantum transport. They also address chaos-based cryptography as an example of the technical application of highly nonlinear laser systems.

Book Nonlinear Laser Dynamics

    Book Details:
  • Author : Kathy Lüdge
  • Publisher : John Wiley & Sons
  • Release : 2012-01-17
  • ISBN : 3527411003
  • Pages : 412 pages

Download or read book Nonlinear Laser Dynamics written by Kathy Lüdge and published by John Wiley & Sons. This book was released on 2012-01-17 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: A distinctive discussion of the nonlinear dynamical phenomena of semiconductor lasers. The book combines recent results of quantum dot laser modeling with mathematical details and an analytic understanding of nonlinear phenomena in semiconductor lasers and points out possible applications of lasers in cryptography and chaos control. This interdisciplinary approach makes it a unique and powerful source of knowledge for anyone intending to contribute to this field of research. By presenting both experimental and theoretical results, the distinguished authors consider solitary lasers with nano-structured material, as well as integrated devices with complex feedback sections. In so doing, they address such topics as the bifurcation theory of systems with time delay, analysis of chaotic dynamics, and the modeling of quantum transport. They also address chaos-based cryptography as an example of the technical application of highly nonlinear laser systems.

Book Principles of Laser Dynamics

Download or read book Principles of Laser Dynamics written by Y.I. Khanin and published by Newnes. This book was released on 2012-12-02 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph summarizes major achievements in laser dynamics over the past three decades. The book begins with two introductory Chapters. Chapter 1 offers general considerations on quantum oscillators, formulates the requirements for the laser key elements and shows how these requirements are met in different laser systems. The second Chapter proposes the mathematical models used in semiclassical laser theory, discusses the approximations and simplifications in particular cases, and specifies the range of applicability of these models. In Chapters 3-5 attention is given primarily to the steady states and their stability, the laser behavior in the instability domain, the characteristics of regular and chaotic pulsations and the nature of their mechanisms. Chapter 6 deals with the processes in a laser, accompanying the time variance of laser parameters. Considerable attention is given to a laser response to weak, low-frequency modulation of the parameters. The problems addressed therein are resonant modulation enhancement, transition to the nonlinear regime, chaotic response to periodic impact, spike-like generation due to variation of the cavity geometry and a laser rod temperature drift. Laser behavior is subject to qualitative changes if its optical elements exhibit nonlinear properties. The action of a saturable absorber, which leads to a loss of laser stability and provides passive Q-modulation, is investigated. To a much lesser degree the researchers' attention has been attracted by other nonlinear effects such as self-focusing, e.g., which may have a strong influence on laser dynamics. All of these issues are covered in Chapter 7. The book is intended for researchers, engineers, graduate and post-graduate students majoring in quantum electronics.

Book Laser Dynamics

    Book Details:
  • Author : Thomas Erneux
  • Publisher : Cambridge University Press
  • Release : 2010-04-29
  • ISBN : 9780521830409
  • Pages : 376 pages

Download or read book Laser Dynamics written by Thomas Erneux and published by Cambridge University Press. This book was released on 2010-04-29 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bridging the gap between laser physics and applied mathematics, this book offers a new perspective on laser dynamics. Combining fresh treatments of classic problems with up-to-date research, asymptotic techniques appropriate for nonlinear dynamical systems are shown to offer a powerful alternative to numerical simulations. The combined analytical and experimental description of dynamical instabilities provides a clear derivation of physical formulae and an evaluation of their significance. Starting with the observation of different time scales of an operating laser, the book develops approximation techniques to systematically explore their effects. Laser dynamical regimes are introduced at different levels of complexity, from standard turn-on experiments to stiff, chaotic, spontaneous or driven pulsations. Particular attention is given to quantitative comparisons between experiments and theory. The book broadens the range of analytical tools available to laser physicists and provides applied mathematicians with problems of practical interest, making it invaluable for graduate students and researchers.

Book Fundamental Issues of Nonlinear Laser Dynamics

Download or read book Fundamental Issues of Nonlinear Laser Dynamics written by Bernd Krauskopf and published by American Institute of Physics. This book was released on 2000-12-07 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first collection of tutorials on nonlinear dynamics of lasers. The International Spring School on Fundamental Issues of Nonlinear Laser Dynamics was aimed at young researchers who are interested in working at the forefront of applied nonlinear mathematics and nonlinear laser dynamics. In a highly interdisciplinary spirit, there were tutorial presentations from 14 internationally recognized top experts from applied mathematics, theoretical and experimental physics, and engineering disciplines. Topics included are: bifurcation theory, the notion of chaos, multiple time scale systems, and delay equations. The dynamics of lasers with optical injection and optical feedback, and lasers with spatio-temporal dynamics are discussed from the theoretical, experimental, and device simulation points of view. Applications of lasers include secure communications, pulse generation and telecommunication through optical fibers. This mixture of introductory material will benefit an inderdisciplinary readership of researchers, lecturers and students in the fields of applied mathematics, physics, and electrical engineering.

Book Nonlinear Optical Cavity Dynamics

Download or read book Nonlinear Optical Cavity Dynamics written by Philippe Grelu and published by John Wiley & Sons. This book was released on 2015-12-14 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: By recirculating light in a nonlinear propagation medium, the nonlinear optical cavity allows for countless options of light transformation and manipulation. In passive media, optical bistability and frequency conversion are central figures. In active media, laser light can be generated with versatile underlying dynamics. Emphasizing on ultrafast dynamics, the vital arena for the information technology, the soliton is a common conceptual keyword, thriving into its modern developments with the closely related denominations of dissipative solitons and cavity solitons. Recent technological breakthroughs in optical cavities, from micro-resonators to ultra-long fiber cavities, have entitled the exploration of nonlinear optical dynamics over unprecedented spatial and temporal orders of magnitude. By gathering key contributions by renowned experts, this book aims at bridging the gap between recent research topics with a view to foster cross-fertilization between research areas and stimulating creative optical engineering design.

Book Laser Dynamics

    Book Details:
  • Author : Thomas Erneux
  • Publisher : Cambridge University Press
  • Release : 2010-04-29
  • ISBN : 1139486977
  • Pages : 379 pages

Download or read book Laser Dynamics written by Thomas Erneux and published by Cambridge University Press. This book was released on 2010-04-29 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bridging the gap between laser physics and applied mathematics, this book offers a new perspective on laser dynamics. Combining fresh treatments of classic problems with up-to-date research, asymptotic techniques appropriate for nonlinear dynamical systems are shown to offer a powerful alternative to numerical simulations. The combined analytical and experimental description of dynamical instabilities provides a clear derivation of physical formulae and an evaluation of their significance. Starting with the observation of different time scales of an operating laser, the book develops approximation techniques to systematically explore their effects. Laser dynamical regimes are introduced at different levels of complexity, from standard turn-on experiments to stiff, chaotic, spontaneous or driven pulsations. Particular attention is given to quantitative comparisons between experiments and theory. The book broadens the range of analytical tools available to laser physicists and provides applied mathematicians with problems of practical interest, making it invaluable for graduate students and researchers.

Book Dynamics of Lasers

Download or read book Dynamics of Lasers written by C. O. Weiss and published by Wiley-VCH. This book was released on 1991 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monograph on laser dynamics, intended for those involved with laser optics, nonlinear dynamics, atomic physics, solid state physics molecular physics and spectroscopy. Subjects covered include the history of laser dynamics, theoretical models of nonlinear dynamics, and practical usage.

Book Passively Mode Locked Semiconductor Lasers

Download or read book Passively Mode Locked Semiconductor Lasers written by Lina Jaurigue and published by Springer. This book was released on 2017-06-22 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis investigates the dynamics of passively mode-locked semiconductor lasers, with a focus on the influence of optical feedback on the noise characteristics. The results presented here are important for improving the performance of passively mode-locked semiconductor lasers and, at the same time, are relevant for understanding delay-systems in general. The semi-analytic results developed are applicable to a broad range of oscillatory systems with time-delayed feedback, making the thesis of relevance to various scientific communities. Passively mode-locked lasers can produce pulse trains and have applications in the contexts of optical clocking, microscopy and optical data communication, among others. Using a system of delay differential equations to model these devices, a combination of numerical and semi-analytic methods is developed and used to characterize this system.

Book Nonlinear Dynamics in Optical Complex Systems

Download or read book Nonlinear Dynamics in Optical Complex Systems written by Kenju Otsuka and published by Springer Science & Business Media. This book was released on 2000-04-30 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first comprehensive volume on nonlinear dynamics and chaos in optical systems. A few books have been published recently, but they summarize applied mathematical methodologies toward understanding of nonlinear dynamics in laser systems with small degrees of freedom focusing on linearized perturbation and bifurcation analyses. In contrast to these publications, this book summarizes nonlinear dynamic problems in optical complex systems possessing large degrees of freedom, systematically featuring our original experimental results and their theoretical treatments. The new concepts introduced in this book will have a wide appeal to audiences involved in a rapidly-growing field of nonlinear dynamics. This book focuses on nonlinear dynamics and cooperative functions in realistic optical complex systems, such as multimode lasers, laser array, coupled nonlinear-element systems, and their applications to optical processing. This book is prepared for graduate students majoring in optical and laser physics, but the generic nature of complex systems described in this book may stimulate researchers in the field of nonlinear dynamics covering different academic areas including applied mathematics, hydrodynamics, celestial mechanics, chemistry, biology, and economics.

Book Nonlinear Optics and Dynamics in Semiconductor Lasers

Download or read book Nonlinear Optics and Dynamics in Semiconductor Lasers written by and published by . This book was released on 1994 with total page 82 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor laser output characteristics, including output spectra and dynamics, are strongly influenced by nonlinear optical interactions. Theory and experiments are combined to show that a single mode mode of laser dynamics gives a consistent and quantitatively accurate description of the noise and optical interaction characteristics of a quantum well laser diode. The nonlinear optical interaction between the oscillating field of a semiconductor laser and a weak optical probe can be used to determine key dynamical characteristics of the laser. With these characteristics known, the noise spectra of a free running semiconductor laser can be quantitatively modeled. When a stronger optical probe is injected into the laser diode, we observe nonlinear dynamics, including deterministic chaos, which can be understood with the single mode model. The model and experimental techniques used here are applicable to a wide variety of semiconductor lasers.

Book Optical Communication with Chaotic Lasers

Download or read book Optical Communication with Chaotic Lasers written by Atsushi Uchida and published by John Wiley & Sons. This book was released on 2012-02-13 with total page 669 pages. Available in PDF, EPUB and Kindle. Book excerpt: Starting with an introduction to the fundamental physics in chaotic instabilities in laser systems, this comprehensive and unified reference goes on to present the techniques and technology of synchronization of chaos in coupled lasers, as well as the many applications to lasers and optics, communications, security and information technology. Throughout, it presents the current state of knowledge, including encoding/decoding techniques, performance of chaotic communication systems, random number generation, and novel communication technologies.

Book Fundamentals of Laser Dynamics

Download or read book Fundamentals of Laser Dynamics written by I͡Akov Izrailevich Khanin and published by Cambridge Int Science Publishing. This book was released on 2006 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book explores the current state of laser dynamics and provides reference data and basic experimental facts for old- and new-generation lasers. The most frequently used mathematical models are presented. The author discusses the reasons for the spontaneous occurrence of pulsation of the intensity of radiation of solid-state lasers and the influence of the non-stationary nature of laser elements on lasing characteristics. Special emphasis is placed on the problems of the low-frequency dynamics of multimode lasers. This book is aimed at experts in the fields of quantum electronics and laser physics.

Book Nonlinear Optical Cavity Dynamics

Download or read book Nonlinear Optical Cavity Dynamics written by Philippe Grelu and published by John Wiley & Sons. This book was released on 2015-12-23 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: By recirculating light in a nonlinear propagation medium, the nonlinear optical cavity allows for countless options of light transformation and manipulation. In passive media, optical bistability and frequency conversion are central figures. In active media, laser light can be generated with versatile underlying dynamics. Emphasizing on ultrafast dynamics, the vital arena for the information technology, the soliton is a common conceptual keyword, thriving into its modern developments with the closely related denominations of dissipative solitons and cavity solitons. Recent technological breakthroughs in optical cavities, from micro-resonators to ultra-long fiber cavities, have entitled the exploration of nonlinear optical dynamics over unprecedented spatial and temporal orders of magnitude. By gathering key contributions by renowned experts, this book aims at bridging the gap between recent research topics with a view to foster cross-fertilization between research areas and stimulating creative optical engineering design.

Book Recent Advances In Laser Dynamics  Control And Synchronization

Download or read book Recent Advances In Laser Dynamics Control And Synchronization written by Alexander N. Pisarchik and published by . This book was released on 2008-01-01 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: After the first time chaos could be controlled, for the last quarter of century, a diversity of publications have been devoted to the development of new control schemes and their applications to different laser systems. This book assembles several review papers which analyze and describe the most important achievements in controlling laser dynamics and synchronization of laser systems. The papers report a variety of interesting dynamical phenomena encountered in different types of lasers and related to control techniques. For the last 20 years laser physics and nonlinear dynamics have undergone a crucial progress. Understanding lasers as dynamical systems involves concepts associated mostly with the nonlinear nature of these systems. Since the appearance of the pioneering work of E. Ott, C. Grebogi and J. A. Yorke in 1990, who proposed a method for controlling chaos, active attempts for applying this method and other control methods to laser systems have been conducted. Many research works were directed not only to the observation and identification of dynamical regimes in lasers, but also to control laser dynamics and chaos. Considerable progress has been made in research and development of semiconductor and fiber lasers. The special interest these lasers stir up is explained by their easy operation, small size, low price, and, of course, their successful application in communications. However, in spite of the huge progress in laser physics and nonlinear dynamics, only few reviews have been devoted to this topic. The book has an interdisciplinary character because the topic of this book is a great mixture of four big areas of science: laser physics, nonlinear dynamics, control theory, and synchronization. Each area was developed independently till the first nonlinear control of laser dynamics has been realized. The aim of this book is to address a broad readership: students, researchers, engineers, technicians, who work with lasers, as well as scientists conducting interdisciplinary research; it is intended for both theoreticians and experimentalists. The intention of this book is to give the reader a good understanding of nonlinear laser dynamics, not only in one specific type of laser but rather in many different types of lasers, as each control method or coupling is introduced. Four chapters of the book are devoted to laser dynamics control and describe the most important achievements of the last two decades in this topic. These chapters review already classical and relatively new results on stabilizing unstable periodic orbits in chaotic lasers and other control methods providing the reader with an extensive bibliography. The book also contains four chapters devoted to synchronization of coupled lasers. Special attention in the book is given to experimental applications of different control methods and synchronization phenomena in different laser systems. Editing this book has been a rewarding experience for me. Since 1979, I have been associated with lasers, beginning as a postgraduate student at the Institute of Physics of the Belarus Academy of Sciences in Minsk when I helped build a CO2 laser for a research project under Professor Vladimir V. Churakov direction. He was the first person to instil in me an enthusiasm for optics and light. I then was very fortunate to do my thesis work under supervision of Academician of the Byelorussian Academy of Sciences Boris Ivanovich Stepanov, who encouraged me to reduce ideas to simple concepts. Being very diligent, he nonetheless, also was a cheery person. He used to say that a real scientist has to work more than 24 hours per day, write monographs and must never stay too much time in one research area, but should change direction from time to time. I also thank Dr. Boris F. Kuntsevich for helping me to understand the fundamental theory of laser oscillations. At that time, in the late 70s - early 80s, since there were no personal computers we had to search for analytical solutions of laser equations. This was a good exercise to learn the foundation of laser physics. I am grateful to my colleagues Drs. Vladimir O. Petukhov and Ivan M. Bertel, who played a key role in my experimental practice helping me to install and equip my first experimental setup. Being a part of a stimulating group of young researchers at the Laboratory of General Spectroscopy during the growth of the field of laser spectroscopy was an unparalleled opportunity. We built CO2 lasers and tried to stabilize them for spectroscopy applications. For a long period of time Dr. Viacheslav N. Chizhevsky and I worked together, he got me involved in the world of chaos and helped me take my first steps into numerical simulations with MATLAB; together we carried out many experiments with CO2 lasers. He shared his ideas with me and I deeply appreciate all our fruitful discussions. Back then, we thought (about) laser was a stable device and treated any instabilities and chaos as a consequence of mechanical vibrations or bad alignment. It was only in 1964 that the Russian physicists A. Z. Grazyuk and A. N. Oraevskii found in numerical studies of the equations describing a simplest (homogeneously broadened, single-mode, traveling wave, resonantly tuned) laser, a time-dependent solution that consisted of pulses, varying irregularly with time. They even used at that time the term chaotic to describe this irregular pulsing behavior. Laser dynamics stagnated in a rudimentary state for more than one decade until in 1975, when the German theoretical physicist G. Haken concluded, from the isomorphy of a laser with Lorenz equations, that lasers could exhibit a non-periodic, pulsing emission, that is a chaotic emission. Even though, in the early 80s we did not believe that the Lorenz-Haken instability was inherent to real laser systems; thinking it was only an academic curiosity invented by theoreticians far removed from the daily reality of experimental laser physics, nonlinear laser dynamics was born and in 1982 after the first clear experimental evidence of laser chaos, was baptized by F. T. Arecchi These results, sharpening the perception of lasers as unstable systems, were then followed by a large number of experimental and theoretical investigations. Many researchers tried to exploit the new acquired knowledge of laser dynamics in some applications. Even though, the principal aim was still focused on avoiding instabilities to obtain a stable laser emission. Curiously, we had observed chaos in a bidirectional ring CO2 laser long before it was discovered by Prof. Arecchi's group. However, we did not pay serious attention to these findings, thinking it was the same chaotic behavior that had been previously observed in solid-state lasers. Moreover, we could not even publish our results in public scientific journals because in the Soviet Union of the 80's, during the period of Cold War, laser subjects were classified as top secret and not even the word laser was allowed to be used in open scientific literature. To evade this ban and get permission to publish our results, we had to replace the word laser by synonym words optical quantum generator . Many scientists who dealt with lasers were not allowed to go abroad and participate in international conferences. I was mainly a laser experimentalist until 1997, when I went to Canada with my own means to participate in the Summer School on Nonlinear Dynamics in Biology and Medicine organized by Leon Glass and Michael C. Mackey at McGill University in Montreal, where we took very useful lectures and practical exercises on theoretical modeling of physiological systems. Thanks to these lectures I came to realize that the world obeys universal dynamical laws, and also discovered for myself that many phenomena observed in lasers are present in a wide class of dynamical systems. This instilled in me the idea that a laser can serve as a very useful instrument to elaborate new methods for controlling nonlinear dynamics and chaos, which can be applied then to other systems, including biological and medical ones. Professor Arecchi and coworkers developed the same idea in their recent works; they do mention such similarity in the first chapter of this book. During the economically difficult period of the perestroika many scientists from the former Soviet Union had to abandon science and either go work for the industry or establish their own business. Some of the science-loving researchers who yet insisted on working at universities and research institutes had to paint roofs and towers or buy and resell things in order to survive. Many of us were looking for a job abroad. I was very fortunate to be invited first in 1992 by Professor Michel Herman from Physical Chemistry Laboratory at the University of Brussels where I spent three months working with dye lasers and fast Fourier spectroscopy. Then, thanks to Professor Ramón Corbalán who invited me to create the Laboratory of Infrared and Far Infrared Lasers at Universitat Autónoma de Barcelona, I spent almost seven years in Spain, where we carried out a series of interesting experiments on laser dynamics control. During that period I was happy to visit other universities and laser laboratories, such as the laboratory of Professor Pierre Glorieux at Université de Lille (France) and Professor Fortunato Tito Arecchi at Institute de Ottica Applicata in Florence (Italy), where we carried out several collaborative experiments with CO2 lasers. I also thank Professor Ari Olafson for the kind hospitality he extended to me in Reykjavik where I spent four unforgivable months in 1996 working at the University of Iceland. Finally, to round out my scientific carrier I was invited to Mexico in 1999 where I presently work as a Research Professor at Centro de Investigaciones en Optica in Leon, Guanajuato. I wish to thank Dr. Vicente Aboites, physicist and philosopher, for his kind invitation. Although the laser technology in Mexico is not yet advanced, the government is making a great effort to help develop national laser science and technology. I thank CONACYT (National Council for Science and Technology) for partial support of the publication of this book through project No. 46973-E, in particular, and research on lasers and applications, in general. Working in the field of lasers and nonlinear dynamics at several different institutions has provided me with a broad perspective that I hope has successfully contributed to the manner in which many of the concepts are presented in this book. I thank all of the authors who contributed to this book and to the reviewers who worked under great time pressure to complete the reviewing process in a relatively short time. I sincerely hope this book will stimulate new discussions and fundamental issues to a deeper level of understanding of laser dynamics and to develop new approaches to control and synchronization of laser systems. The results of this exercise could be also useful on the definition of scientific and technological programs related to this topic.

Book Dynamics of Quantum Dot Lasers

Download or read book Dynamics of Quantum Dot Lasers written by Christian Otto and published by Springer Science & Business Media. This book was released on 2014-01-21 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis deals with the dynamics of state-of-the-art nanophotonic semiconductor structures, providing essential information on fundamental aspects of nonlinear dynamical systems on the one hand, and technological applications in modern telecommunication on the other. Three different complex laser structures are considered in detail: (i) a quantum-dot-based semiconductor laser under optical injection from a master laser, (ii) a quantum-dot laser with optical feedback from an external resonator, and (iii) a passively mode-locked quantum-well semiconductor laser with saturable absorber under optical feedback from an external resonator. Using a broad spectrum of methods, both numerical and analytical, this work achieves new fundamental insights into the interplay of microscopically based nonlinear laser dynamics and optical perturbations by delayed feedback and injection.

Book Semiconductor Laser Dynamics

Download or read book Semiconductor Laser Dynamics written by Daan Lenstra and published by . This book was released on 2020-09-10 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a collection of 18 papers, two of which are reviews and seven are invited feature papers, that together form the Photonics Special Issue "Semiconductor Laser Dynamics: Fundamentals and Applications", published in 2020. This collection is edited by Daan Lenstra, an internationally recognized specialist in the field for 40 years.