EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Nonlinear Hamiltonian Mechanics Applied to Molecular Dynamics

Download or read book Nonlinear Hamiltonian Mechanics Applied to Molecular Dynamics written by Stavros C. Farantos and published by Springer. This book was released on 2014-09-22 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: This brief presents numerical methods for describing and calculating invariant phase space structures, as well as solving the classical and quantum equations of motion for polyatomic molecules. Examples covered include simple model systems to realistic cases of molecules spectroscopically studied. Vibrationally excited and reacting molecules are nonlinear dynamical systems, and thus, nonlinear mechanics is the proper theory to elucidate molecular dynamics by investigating invariant structures in phase space. Intramolecular energy transfer, and the breaking and forming of a chemical bond have now found a rigorous explanation by studying phase space structures.

Book Nonlinear Hamiltonian Mechanics Applied to Molecular Dynamics

Download or read book Nonlinear Hamiltonian Mechanics Applied to Molecular Dynamics written by Stavros Farantos and published by Springer. This book was released on 2014-09-26 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: This brief presents numerical methods for describing and calculating invariant phase space structures, as well as solving the classical and quantum equations of motion for polyatomic molecules. Examples covered include simple model systems to realistic cases of molecules spectroscopically studied. Vibrationally excited and reacting molecules are nonlinear dynamical systems, and thus, nonlinear mechanics is the proper theory to elucidate molecular dynamics by investigating invariant structures in phase space. Intramolecular energy transfer, and the breaking and forming of a chemical bond have now found a rigorous explanation by studying phase space structures.

Book Structure preserving Integrators in Nonlinear Structural Dynamics and Flexible Multibody Dynamics

Download or read book Structure preserving Integrators in Nonlinear Structural Dynamics and Flexible Multibody Dynamics written by Peter Betsch and published by Springer. This book was released on 2016-05-10 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on structure-preserving numerical methods for flexible multibody dynamics, including nonlinear elastodynamics and geometrically exact models for beams and shells. It also deals with the newly emerging class of variational integrators as well as Lie-group integrators. It discusses two alternative approaches to the discretization in space of nonlinear beams and shells. Firstly, geometrically exact formulations, which are typically used in the finite element community and, secondly, the absolute nodal coordinate formulation, which is popular in the multibody dynamics community. Concerning the discretization in time, the energy-momentum method and its energy-decaying variants are discussed. It also addresses a number of issues that have arisen in the wake of the structure-preserving discretization in space. Among them are the parameterization of finite rotations, the incorporation of algebraic constraints and the computer implementation of the various numerical methods. The practical application of structure-preserving methods is illustrated by a number of examples dealing with, among others, nonlinear beams and shells, large deformation problems, long-term simulations and coupled thermo-mechanical multibody systems. In addition it links novel time integration methods to frequently used methods in industrial multibody system simulation.

Book Molecular Dynamics

    Book Details:
  • Author : Ben Leimkuhler
  • Publisher : Springer
  • Release : 2015-05-18
  • ISBN : 3319163752
  • Pages : 461 pages

Download or read book Molecular Dynamics written by Ben Leimkuhler and published by Springer. This book was released on 2015-05-18 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the mathematical underpinnings of algorithms used for molecular dynamics simulation, including both deterministic and stochastic numerical methods. Molecular dynamics is one of the most versatile and powerful methods of modern computational science and engineering and is used widely in chemistry, physics, materials science and biology. Understanding the foundations of numerical methods means knowing how to select the best one for a given problem (from the wide range of techniques on offer) and how to create new, efficient methods to address particular challenges as they arise in complex applications. Aimed at a broad audience, this book presents the basic theory of Hamiltonian mechanics and stochastic differential equations, as well as topics including symplectic numerical methods, the handling of constraints and rigid bodies, the efficient treatment of Langevin dynamics, thermostats to control the molecular ensemble, multiple time-stepping, and the dissipative particle dynamics method.

Book Simulating Hamiltonian Dynamics

Download or read book Simulating Hamiltonian Dynamics written by Benedict Leimkuhler and published by Cambridge University Press. This book was released on 2004 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometric integrators are time-stepping methods, designed such that they exactly satisfy conservation laws, symmetries or symplectic properties of a system of differential equations. In this book the authors outline the principles of geometric integration and demonstrate how they can be applied to provide efficient numerical methods for simulating conservative models. Beginning from basic principles and continuing with discussions regarding the advantageous properties of such schemes, the book introduces methods for the N-body problem, systems with holonomic constraints, and rigid bodies. More advanced topics treated include high-order and variable stepsize methods, schemes for treating problems involving multiple time-scales, and applications to molecular dynamics and partial differential equations. The emphasis is on providing a unified theoretical framework as well as a practical guide for users. The inclusion of examples, background material and exercises enhance the usefulness of the book for self-instruction or as a text for a graduate course on the subject.

Book Nonlinear Mechanics

    Book Details:
  • Author : Alexander L. Fetter
  • Publisher : Courier Corporation
  • Release : 2012-05-04
  • ISBN : 048613699X
  • Pages : 162 pages

Download or read book Nonlinear Mechanics written by Alexander L. Fetter and published by Courier Corporation. This book was released on 2012-05-04 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: In their prior Dover book, the authors provided a self-contained account of classical mechanics; this supplement/update offers a bridge to contemporary mechanics. Topics include nonlinear continuous systems. 2006 edition.

Book Classical Mechanics

    Book Details:
  • Author : Walter Greiner
  • Publisher : Springer Science & Business Media
  • Release : 2003
  • ISBN : 9780387951287
  • Pages : 572 pages

Download or read book Classical Mechanics written by Walter Greiner and published by Springer Science & Business Media. This book was released on 2003 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: The series of texts on Classical Theoretical Physics is based on the highly successful series of courses given by Walter Greiner at the Johann Wolfgang Goethe University in Frankfurt am Main, Germany. Intended for advanced undergraduates and beginning graduate students, the volumes in the series provide not only a complete survey of classical theoretical physics but also a large number of worked examples and problems to show students clearly how to apply the abstract principles to realistic problems.

Book Simulating Hamiltonian Dynamics

Download or read book Simulating Hamiltonian Dynamics written by B. Leimkuhler and published by . This book was released on 2004 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Statistical Mechanics of Nonequilibrium Liquids

Download or read book Statistical Mechanics of Nonequilibrium Liquids written by Denis J. Evans and published by Elsevier. This book was released on 2013-10-22 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Mechanics of Nonequilibrium Liquids deals with theoretical rheology. The book discusses nonlinear response of systems and outlines the statistical mechanical theory. In discussing the framework of nonequilibrium statistical mechanics, the book explains the derivation of a nonequilibrium analogue of the Gibbsian basis for equilibrium statistical mechanics. The book reviews the linear irreversible thermodynamics, the Liouville equation, and the Irving-Kirkwood procedure. The text then explains the Green-Kubo relations used in linear transport coefficients, the linear response theory, the isothermal linear response theory, as well as the equivalence of thermostatted linear responses. The book also describes how thermostatted linear mechanical response of many-body systems can be related to equilibrium fluctuations. The text explains the procedure for calculating the linear Navier-Stokes transport coefficients through computer simulation algorithms. The book also discusses the van Kampen objection to linear response theory, the steady-state fluctuations, and the thermodynamics of steady states. The text will prove valuable for researchers in molecular chemistry, scientists, and academicians involved in advanced physics.

Book Lagrangian and Hamiltonian Mechanics

Download or read book Lagrangian and Hamiltonian Mechanics written by Melvin G. Calkin and published by World Scientific. This book was released on 1996 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book takes the student from the Newtonian mechanics typically taught in the first and the second year to the areas of recent research. The discussion of topics such as invariance, Hamiltonian-Jacobi theory, and action-angle variables is especially complete; the last includes a discussion of the Hannay angle, not found in other texts. The final chapter is an introduction to the dynamics of nonlinear nondissipative systems. Connections with other areas of physics which the student is likely to be studying at the same time, such as electromagnetism and quantum mechanics, are made where possible. There is thus a discussion of electromagnetic field momentum and mechanical?hidden? momentum in the quasi-static interaction of an electric charge and a magnet. This discussion, among other things explains the?(e/c)A? term in the canonical momentum of a charged particle in an electromagnetic field. There is also a brief introduction to path integrals and their connection with Hamilton's principle, and the relation between the Hamilton-Jacobi equation of mechanics, the eikonal equation of optics, and the Schr”dinger equation of quantum mechanics.The text contains 115 exercises. This text is suitable for a course in classical mechanics at the advanced undergraduate level.

Book Hamiltonian Dynamical Systems

Download or read book Hamiltonian Dynamical Systems written by R.S MacKay and published by CRC Press. This book was released on 1987-01-01 with total page 808 pages. Available in PDF, EPUB and Kindle. Book excerpt: Classical mechanics is a subject that is teeming with life. However, most of the interesting results are scattered around in the specialist literature, which means that potential readers may be somewhat discouraged by the effort required to obtain them. Addressing this situation, Hamiltonian Dynamical Systems includes some of the most significant papers in Hamiltonian dynamics published during the last 60 years. The book covers bifurcation of periodic orbits, the break-up of invariant tori, chaotic behavior in hyperbolic systems, and the intricacies of real systems that contain coexisting order and chaos. It begins with an introductory survey of the subjects to help readers appreciate the underlying themes that unite an apparently diverse collection of articles. The book concludes with a selection of papers on applications, including in celestial mechanics, plasma physics, chemistry, accelerator physics, fluid mechanics, and solid state mechanics, and contains an extensive bibliography. The book provides a worthy introduction to the subject for anyone with an undergraduate background in physics or mathematics, and an indispensable reference work for researchers and graduate students interested in any aspect of classical mechanics.

Book Computational Molecular Dynamics  Challenges  Methods  Ideas

Download or read book Computational Molecular Dynamics Challenges Methods Ideas written by Peter Deuflhard and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: On May 21-24, 1997 the Second International Symposium on Algorithms for Macromolecular Modelling was held at the Konrad Zuse Zentrum in Berlin. The event brought together computational scientists in fields like biochemistry, biophysics, physical chemistry, or statistical physics and numerical analysts as well as computer scientists working on the advancement of algorithms, for a total of over 120 participants from 19 countries. In the course of the symposium, the speakers agreed to produce a representative volume that combines survey articles and original papers (all refereed) to give an impression of the present state of the art of Molecular Dynamics. The 29 articles of the book reflect the main topics of the Berlin meeting which were i) Conformational Dynamics, ii) Thermodynamic Modelling, iii) Advanced Time-Stepping Algorithms, iv) Quantum-Classical Simulations and Fast Force Field and v) Fast Force Field Evaluation.

Book Classical Mechanics

    Book Details:
  • Author : Joseph L. McCauley
  • Publisher : Cambridge University Press
  • Release : 1997-05-08
  • ISBN : 9780521578820
  • Pages : 492 pages

Download or read book Classical Mechanics written by Joseph L. McCauley and published by Cambridge University Press. This book was released on 1997-05-08 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: This advanced text is the first book to describe the subject of classical mechanics in the context of the language and methods of modern nonlinear dynamics. The organizing principle of the text is integrability vs. nonintegrability.

Book Nonlinear Dynamics  Volume 2

Download or read book Nonlinear Dynamics Volume 2 written by Gaetan Kerschen and published by Springer Science & Business Media. This book was released on 2014-03-28 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second volume of eight from the IMAC - XXXII Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: Linear Systems Substructure Modelling Adaptive Structures Experimental Techniques Analytical Methods Damage Detection Damping of Materials & Members Modal Parameter Identification Modal Testing Methods System Identification Active Control Modal Parameter Estimation Processing Modal Data

Book Hamiltonian Mechanics

    Book Details:
  • Author : John Seimenis
  • Publisher : Springer Science & Business Media
  • Release : 2013-11-11
  • ISBN : 1489909648
  • Pages : 417 pages

Download or read book Hamiltonian Mechanics written by John Seimenis and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains invited papers and contributions delivered at the International Conference on Hamiltonian Mechanics: Integrability and Chaotic Behaviour, held in Tornn, Poland during the summer of 1993. The conference was supported by the NATO Scientific and Environmental Affairs Division as an Advanced Research Workshop. In fact, it was the first scientific conference in all Eastern Europe supported by NATO. The meeting was expected to establish contacts between East and West experts as well as to study the current state of the art in the area of Hamiltonian Mechanics and its applications. I am sure that the informal atmosphere of the city of Torun, the birthplace of Nicolaus Copernicus, stimulated many valuable scientific exchanges. The first idea for this cnference was carried out by Prof Andrzej J. Maciejewski and myself, more than two years ago, during his visit in Greece. It was planned for about forty well-known scientists from East and West. At that time participation of a scientist from Eastern Europe in an Organising Committee of a NATO Conference was not allowed. But always there is the first time. Our plans for such a "small" conference, as a first attempt in the new European situation -the Europe without borders -quickly passed away. The names of our invited speakers, authorities in their field, were a magnet for many colleagues from all over the world.

Book Dynamics of Glassy  Crystalline and Liquid Ionic Conductors

Download or read book Dynamics of Glassy Crystalline and Liquid Ionic Conductors written by Junko Habasaki and published by Springer. This book was released on 2016-10-19 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the physics of the dynamics of ions in various ionically conducting materials, and applications including electrical energy generation and storage. The experimental techniques for measurements and characterization, molecular dynamics simulations, the theories of ion dynamics, and applications are all addressed by the authors, who are experts in their fields. The experimental techniques of measurement and characterization of dynamics of ions in glassy, crystalline, and liquid ionic conductors are introduced with the dual purpose of introducing the reader to the experimental activities of the field, and preparing the reader to understand the physical quantities derived from experiments. These experimental techniques include calorimetry, conductivity relaxation, nuclear magnetic resonance, light scattering, neutron scattering, and others. Methods of molecular dynamics simulations are introduced to teach the reader to utilize the technique for practical applications to specific problems. The results elucidate the dynamics of ions on some issues that are not accessible by experiments. The properties of ion dynamics in glassy, crystalline and liquid ionic conductors brought forth by experiments and simulations are shown to be universal, i.e. independent of physical and chemical structure of the ionic conductor as long as ion-ion interaction is the dominant factor. Moreover these universal properties of ion dynamics are shown to be isomorphic to other complex interacting systems including the large class of glass-forming materials with or without ionic conductivity.By covering the basic concepts, theories/models, experimental techniques and data, molecular dynamics simulations, and relating them together, Dynamics of Glassy, Crystalline and Liquid Ionic Conductors will be of great interest to many in basic and applied research areas from the broad and diverse communities of condensed matter physicists, chemists, materials scientists and engineers. The book also provides the fundamentals for an introduction to the field and it is written in such a way that can be used for teaching courses either at the undergraduate or graduate level in academic institutions.

Book Carbon Nanotube Reinforced Polymers

Download or read book Carbon Nanotube Reinforced Polymers written by Roham Rafiee and published by Elsevier. This book was released on 2017-10-06 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbon Nanotube-Reinforced Polymers: From Nanoscale to Macroscale addresses the advances in nanotechnology that have led to the development of a new class of composite materials known as CNT-reinforced polymers. The low density and high aspect ratio, together with their exceptional mechanical, electrical and thermal properties, render carbon nanotubes as a good reinforcing agent for composites. In addition, these simulation and modeling techniques play a significant role in characterizing their properties and understanding their mechanical behavior, and are thus discussed and demonstrated in this comprehensive book that presents the state-of-the-art research in the field of modeling, characterization and processing. The book separates the theoretical studies on the mechanical properties of CNTs and their composites into atomistic modeling and continuum mechanics-based approaches, including both analytical and numerical ones, along with multi-scale modeling techniques. Different efforts have been done in this field to address the mechanical behavior of isolated CNTs and their composites by numerous researchers, signaling that this area of study is ongoing. Explains modeling approaches to carbon nanotubes, together with their application, strengths and limitations Outlines the properties of different carbon nanotube-based composites, exploring how they are used in the mechanical and structural components Analyzes the behavior of carbon nanotube-based composites in different conditions