EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Nonlinear Fractional Schr  dinger Equations in R N

Download or read book Nonlinear Fractional Schr dinger Equations in R N written by Vincenzo Ambrosio and published by Springer Nature. This book was released on 2021-04-19 with total page 669 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents recent results concerning nonlinear fractional elliptic problems in the whole space. More precisely, it investigates the existence, multiplicity and qualitative properties of solutions for fractional Schrödinger equations by applying suitable variational and topological methods. The book is mainly intended for researchers in pure and applied mathematics, physics, mechanics, and engineering. However, the material will also be useful for students in higher semesters and young researchers, as well as experienced specialists working in the field of nonlocal PDEs. This is the first book to approach fractional nonlinear Schrödinger equations by applying variational and topological methods.

Book Variational Methods for Nonlocal Fractional Problems

Download or read book Variational Methods for Nonlocal Fractional Problems written by Giovanni Molica Bisci and published by Cambridge University Press. This book was released on 2016-03-11 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thorough graduate-level introduction to the variational analysis of nonlinear problems described by nonlocal operators.

Book Fractional Evolution Equations and Inclusions

Download or read book Fractional Evolution Equations and Inclusions written by Yong Zhou and published by Academic Press. This book was released on 2016-02-05 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fractional evolution inclusions are an important form of differential inclusions within nonlinear mathematical analysis. They are generalizations of the much more widely developed fractional evolution equations (such as time-fractional diffusion equations) seen through the lens of multivariate analysis. Compared to fractional evolution equations, research on the theory of fractional differential inclusions is however only in its initial stage of development. This is important because differential models with the fractional derivative providing an excellent instrument for the description of memory and hereditary properties, and have recently been proved valuable tools in the modeling of many physical phenomena. The fractional order models of real systems are always more adequate than the classical integer order models, since the description of some systems is more accurate when the fractional derivative is used. The advantages of fractional derivatization become evident in modeling mechanical and electrical properties of real materials, description of rheological properties of rocks and in various other fields. Such models are interesting for engineers and physicists as well as so-called pure mathematicians. Phenomena investigated in hybrid systems with dry friction, processes of controlled heat transfer, obstacle problems and others can be described with the help of various differential inclusions, both linear and nonlinear. Fractional Evolution Equations and Inclusions is devoted to a rapidly developing area of the research for fractional evolution equations & inclusions and their applications to control theory. It studies Cauchy problems for fractional evolution equations, and fractional evolution inclusions with Hille-Yosida operators. It discusses control problems for systems governed by fractional evolution equations. Finally it provides an investigation of fractional stochastic evolution inclusions in Hilbert spaces. - Systematic analysis of existence theory and topological structure of solution sets for fractional evolution inclusions and control systems - Differential models with fractional derivative provide an excellent instrument for the description of memory and hereditary properties, and their description and working will provide valuable insights into the modelling of many physical phenomena suitable for engineers and physicists - The book provides the necessary background material required to go further into the subject and explore the rich research literature

Book Fractional Quantum Mechanics

Download or read book Fractional Quantum Mechanics written by Nick Laskin and published by World Scientific. This book was released on 2018-05-28 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fractional quantum mechanics is a recently emerged and rapidly developing field of quantum physics.This is the first monograph on fundamentals and physical applications of fractional quantum mechanics, written by its founder.The fractional Schrödinger equation and the fractional path integral are new fundamental physical concepts introduced and elaborated in the book. The fractional Schrödinger equation is a manifestation of fractional quantum mechanics. The fractional path integral is a new mathematical tool based on integration over Lévy flights. The fractional path integral method enhances the well-known Feynman path integral framework.Related topics covered in the text include time fractional quantum mechanics, fractional statistical mechanics, fractional classical mechanics and the α-stable Lévy random process.The book is well-suited for theorists, pure and applied mathematicians, solid-state physicists, chemists, and others working with the Schrödinger equation, the path integral technique and applications of fractional calculus in various research areas. It is useful to skilled researchers as well as to graduate students looking for new ideas and advanced approaches.

Book Fractional Differential Equations

Download or read book Fractional Differential Equations written by Juan J. Nieto and published by MDPI. This book was released on 2019-11-19 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fractional calculus provides the possibility of introducing integrals and derivatives of an arbitrary order in the mathematical modelling of physical processes, and it has become a relevant subject with applications to various fields, such as anomalous diffusion, propagation in different media, and propogation in relation to materials with different properties. However, many aspects from theoretical and practical points of view have still to be developed in relation to models based on fractional operators. This Special Issue is related to new developments on different aspects of fractional differential equations, both from a theoretical point of view and in terms of applications in different fields such as physics, chemistry, or control theory, for instance. The topics of the Issue include fractional calculus, the mathematical analysis of the properties of the solutions to fractional equations, the extension of classical approaches, or applications of fractional equations to several fields.

Book Basic Theory Of Fractional Differential Equations  Third Edition

Download or read book Basic Theory Of Fractional Differential Equations Third Edition written by Yong Zhou and published by World Scientific. This book was released on 2023-10-06 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: This accessible monograph is devoted to a rapidly developing area on the research of qualitative theory of fractional ordinary differential equations and evolution equations. It is self-contained and unified in presentation, and provides the readers the necessary background material required to go further into the subject and explore the rich research literature. The tools used include many classical and modern nonlinear analysis methods such as fixed point theory, measure of noncompactness method, topological degree method, Picard operators technique, critical point theory and semigroups theory. This book is based on the research work done so far by the author and other experts, and contains comprehensive up-to-date materials on the topic.In this third edition, four new topics have been added: Hilfer fractional evolution equations and infinite interval problems, oscillations and nonoscillations, fractional Hamiltonian systems, fractional Rayleigh-Stokes equations, and wave equations. The bibliography has also been updated and expanded.This book is useful to researchers, graduate or PhD students dealing with fractional calculus and applied analysis, differential equations, and related areas of research.

Book New Developments in the Analysis of Nonlocal Operators

Download or read book New Developments in the Analysis of Nonlocal Operators written by Donatella Danielli and published by American Mathematical Soc.. This book was released on 2019-02-21 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the AMS Special Session on New Developments in the Analysis of Nonlocal Operators, held from October 28–30, 2016, at the University of St. Thomas, Minneapolis, Minnesota. Over the last decade there has been a resurgence of interest in problems involving nonlocal operators, motivated by applications in many areas such as analysis, geometry, and stochastic processes. Problems represented in this volume include uniqueness for weak solutions to abstract parabolic equations with fractional time derivatives, the behavior of the one-phase Bernoulli-type free boundary near a fixed boundary and its relation to a Signorini-type problem, connections between fractional powers of the spherical Laplacian and zeta functions from the analytic number theory and differential geometry, and obstacle problems for a class of not stable-like nonlocal operators for asset price models widely used in mathematical finance. The volume also features a comprehensive introduction to various aspects of the fractional Laplacian, with many historical remarks and an extensive list of references, suitable for beginners and more seasoned researchers alike.

Book Nonlinear and Modern Mathematical Physics

Download or read book Nonlinear and Modern Mathematical Physics written by Solomon Manukure and published by Springer Nature. This book was released on with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Variational Methods for Nonlocal Fractional Problems

Download or read book Variational Methods for Nonlocal Fractional Problems written by Giovanni Molica Bisci and published by Cambridge University Press. This book was released on 2016-03-11 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides researchers and graduate students with a thorough introduction to the variational analysis of nonlinear problems described by nonlocal operators. The authors give a systematic treatment of the basic mathematical theory and constructive methods for these classes of nonlinear equations, plus their application to various processes arising in the applied sciences. The equations are examined from several viewpoints, with the calculus of variations as the unifying theme. Part I begins the book with some basic facts about fractional Sobolev spaces. Part II is dedicated to the analysis of fractional elliptic problems involving subcritical nonlinearities, via classical variational methods and other novel approaches. Finally, Part III contains a selection of recent results on critical fractional equations. A careful balance is struck between rigorous mathematics and physical applications, allowing readers to see how these diverse topics relate to other important areas, including topology, functional analysis, mathematical physics, and potential theory.

Book The Fractional Laplacian

Download or read book The Fractional Laplacian written by Wenxiong Chen and published by World Scientific. This book was released on 2020-06-09 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a unique book that provides a comprehensive understanding of nonlinear equations involving the fractional Laplacian as well as other nonlocal operators. Beginning from the definition of fractional Laplacian, it gradually leads the readers to the frontier of current research in this area. The explanations and illustrations are elementary enough so that first year graduate students can follow easily, while it is advanced enough to include many new ideas, methods, and results that appeared recently in research literature, which researchers would find helpful. It focuses on introducing direct methods on the nonlocal problems without going through extensions, such as the direct methods of moving planes, direct method of moving spheres, direct blowing up and rescaling arguments, and so on. Different from most other books, it emphasizes on illuminating the ideas behind the formal concepts and proofs, so that readers can quickly grasp the essence.

Book Recent Advances in Mathematical Analysis

Download or read book Recent Advances in Mathematical Analysis written by Anna Maria Candela and published by Springer Nature. This book was released on 2023-06-21 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects selected peer reviewed papers on the topics of Nonlinear Analysis, Functional Analysis, (Korovkin-Type) Approximation Theory, and Partial Differential Equations. The aim of the volume is, in fact, to promote the connection among those different fields in Mathematical Analysis. The book celebrates Francesco Altomare, on the occasion of his 70th anniversary.

Book Nonlinear Problems with Lack of Compactness

Download or read book Nonlinear Problems with Lack of Compactness written by Giovanni Molica Bisci and published by Walter de Gruyter GmbH & Co KG. This book was released on 2021-02-08 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: This authoritative book presents recent research results on nonlinear problems with lack of compactness. The topics covered include several nonlinear problems in the Euclidean setting as well as variational problems on manifolds. The combination of deep techniques in nonlinear analysis with applications to a variety of problems make this work an essential source of information for researchers and graduate students working in analysis and PDE's.

Book Nonlinear Dispersive Waves and Fluids

Download or read book Nonlinear Dispersive Waves and Fluids written by Avy Soffer and published by American Mathematical Soc.. This book was released on 2019-03-12 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the AMS Special Session on Spectral Calculus and Quasilinear Partial Differential Equations and the AMS Special Session on PDE Analysis on Fluid Flows, which were held in January 2017 in Atlanta, Georgia. These two sessions shared the underlying theme of the analysis aspect of evolutionary PDEs and mathematical physics. The articles address the latest trends and perspectives in the area of nonlinear dispersive equations and fluid flows. The topics mainly focus on using state-of-the-art methods and techniques to investigate problems of depth and richness arising in quantum mechanics, general relativity, and fluid dynamics.

Book Basic Theory Of Fractional Differential Equations  Second Edition

Download or read book Basic Theory Of Fractional Differential Equations Second Edition written by Yong Zhou and published by World Scientific. This book was released on 2016-10-20 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: This invaluable monograph is devoted to a rapidly developing area on the research of qualitative theory of fractional ordinary and partial differential equations. It provides the readers the necessary background material required to go further into the subject and explore the rich research literature. The tools used include many classical and modern nonlinear analysis methods such as fixed point theory, measure of noncompactness method, topological degree method, the technique of Picard operators, critical point theory and semigroup theory. Based on the research work carried out by the authors and other experts during the past seven years, the contents are very recent and comprehensive.In this edition, two new topics have been added, that is, fractional impulsive differential equations, and fractional partial differential equations including fractional Navier-Stokes equations and fractional diffusion equations.

Book Nonlinear Functional Analysis and Its Applications

Download or read book Nonlinear Functional Analysis and Its Applications written by Radu Precup and published by MDPI. This book was released on 2021-04-14 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book consists of nine papers covering a number of basic ideas, concepts, and methods of nonlinear analysis, as well as some current research problems. Thus, the reader is introduced to the fascinating theory around Brouwer's fixed point theorem, to Granas' theory of topological transversality, and to some advanced techniques of critical point theory and fixed point theory. Other topics include discontinuous differential equations, new results of metric fixed point theory, robust tracker design problems for various classes of nonlinear systems, and periodic solutions in computer virus propagation models.

Book Recent Trends in Nonlinear Partial Differential Equations II

Download or read book Recent Trends in Nonlinear Partial Differential Equations II written by James Serrin and published by American Mathematical Soc.. This book was released on 2013 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the second of two volumes which contain the proceedings of the Workshop on Nonlinear Partial Differential Equations, held from May 28-June 1, 2012, at the University of Perugia in honour of Patrizia Pucci's 60th birthday. The workshop brought together leading experts and researchers in nonlinear partial differential equations to promote research and to stimulate interactions among the participants.

Book Semilinear Schrodinger Equations

Download or read book Semilinear Schrodinger Equations written by Thierry Cazenave and published by American Mathematical Soc.. This book was released on 2003 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: The nonlinear Schrodinger equation has received a great deal of attention from mathematicians, particularly because of its applications to nonlinear optics. This book presents various mathematical aspects of the nonlinear Schrodinger equation. It studies both problems of local nature and problems of global nature.