EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Nonlinear Control Schemes for Extremum Power Seeking and Torsional Vibration Mitigation in Variable Speed Wind Turbine Systems

Download or read book Nonlinear Control Schemes for Extremum Power Seeking and Torsional Vibration Mitigation in Variable Speed Wind Turbine Systems written by Fariba Fateh and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation presents nonlinear control schemes to improve the productivity and lifespan of doubly fed induction generator (DFIG)-based and permanent magnet generator (PMG)-based variable speed wind turbines. To improve the productivity, a nonlinear adaptive control scheme is developed to maximize power capture. This controller consists of three feedback loops. The first loop controls electrical torque of the generator in order to cancel the nonlinear term of the turbine equation of motion using the feedback linearization concept. The nonlinearity cancelation requires a real-time estimation of aerodynamic torque. This is achieved through a second loop which estimates the ratio of the wind turbine power capture versus the available wind power. A third loop utilizes this estimate to identify the shaft speed at which the wind turbine operates at a greater power output. Contrary to existing techniques in literature, this innovative technique does not require any prior knowledge of the optimum tip speed ratio. The presented technique does not need a dither or perturbation signal to track the optimum shaft speed at the maximum power capture. These features make this technique superior to existing methods. Furthermore, the lifespan of variable speed wind turbines is improved by reducing stress on the wind turbine drivetrain. This is achieved via developing a novel vibration mitigation technique using sliding-mode control theory. The technique measures only generator speed as the input signal and then passes it through a high-pass filter in order to extract the speed variations. The filtered signal and its integral are then passed through identical band-pass filters centered at the dominant natural frequency of the drivetrain. These two signals formulate a sliding surface and consequently a control law to damp the drivetrain torsional stress oscillations caused by electrical and mechanical disturbances. This technique provides a robust mitigation approach compared with existing techniques. These control schemes are verified through holistic models of DFIG- and PMG-based wind turbines. Except for wind turbine aerodynamics, for which an existing simulator is used, the developed models of all components including DFIG, PMG, converters, multi-mass drivetrain, and power line are presented in this dissertation.

Book Maximization of Power Capture in Wind Turbines Using Robust Estimation and Lyapunov Extremum Seeking Control

Download or read book Maximization of Power Capture in Wind Turbines Using Robust Estimation and Lyapunov Extremum Seeking Control written by Tony (Greg Anthony) Hawkins and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, the concern has risen to establish clean sources for electric power generation. In 2009, Kansas established an RPS (Renewable Portfolio Standard) mandating utilities acquire 20% of their electricity from renewable energy by 2020 [32]. One of the most prominent renewable energy sources is wind energy. Utility companies now are investing more in wind capture systems to comply with this mandate. This increase in the manufacture of wind turbines has caused researchers to investigate methods to improve the efficiency of captured wind energy and where improvements can be made. This thesis takes a control theory approach to maximizing the power capture of a wind turbine using the concepts of robust estimation, nonlinear control, and Lyapunov-based maximization. A two step control approach to optimize the power capture of a wind turbine is proposed. First, a robust controller is used to estimate unknown aerodynamic properties and regulate the wind turbine tip-speed ratio as it tracks a desired trajectory. Once the tip-speed ratio is regulated within a given tolerance, a Lyapunov-based control approach is developed to provide the robust controller with a desired trajectory to track. This is done by estimating the unknown coefficient of performance of the wind turbine. A discrete update law is then developed to alter the tip-speed ratio and the blade pitch of the wind turbine so that the coefficient of performance is maximized. A simulation is provided of this control strategy and tested under time varying wind conditions and measurement noise in order to demonstrate the controller's performance. The system simulated is intended to emulate a commercial wind turbine operating in a realistic environment. A detailed discussion of the simulation model, control scheme, and results will be provided to supplement the theoretical controller development, as well as future work for this control application.

Book Control of Large Wind Energy Systems

Download or read book Control of Large Wind Energy Systems written by Adrian Gambier and published by Springer Nature. This book was released on 2022-01-12 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wind energy systems are central contributors to renewable energy generation, and their technology is continuously improved and updated. Without losing sight of theory, Control of Large Wind Energy Systems demonstrates how to implement concrete control systems for modern wind turbines, explaining the reasons behind choices and decisions. This book provides an extended treatment of different control topics divided into three thematic parts including modelling, control and implementation. Solutions for real-life difficulties such as multi-parameter tuning of several controllers, curve fitting of nonlinear power curves, and filter design for concrete signals are also undertaken. Examples and a case study are included to illustrate the parametrization of models, the control systems design with problems and possible solutions. Advice for the selection of control laws, calculation of specific parameters, which are necessary for the control laws, as the sensitivity functions, is given, as well as an evaluation of control performance based on indices and load calculation. Control of Large Wind Energy Systems covers methodologies which are not usually found in literature on this topic, including fractional order PID and nonlinear PID for pitch control, peak shaving control and extremum seeking control for the generator control, yaw control and shutdown control. This makes it an ideal book for postgraduate students, researchers and industrial engineers in the field of wind turbine control. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.

Book A Study of Nonlinear Control for Power Generation Systems

Download or read book A Study of Nonlinear Control for Power Generation Systems written by Zongtao Lu and published by . This book was released on 2010 with total page 99 pages. Available in PDF, EPUB and Kindle. Book excerpt: Currently, environmental and economic concerns have pressed the power generation industry to develop more efficient and clean ways of generating electricity power. Facing such environmental and economic pressures, advanced control technology plays key role for both fossil fueled power plants and renewable energy systems. In this work, nonlinear control problems are studied for a boiler-turbine unit and wind turbine systems. Advanced control is crucial for safe and efficient operations of power plants, especially in the presence of fast and large load changes. We study the control problems of load changes for a 160MW boiler-turbine unit. Two schemes are proposed to effectively control the boiler-turbine unit that has various constraints on the system states, outputs, control input and rate of control signals. By taking advantage of the nonlinearities of the boiler-turbine unit, we design a nonlinear state feedback controller. With a careful selection of the controller gains, the states and control inputs can be guaranteed to be within the required physical constraints. To further incorporate the constraints on the system outputs as well as control-input rates into feedback design, we utilize the moving horizon control strategy. The nonminimum phase behavior can be compensated by using a relatively long but computationally-affordable horizon length. The simulations of two control methods demonstrate the well-controlled performances of the boiler-turbine unit under large and fast load changes. Modeling and variable speed control strategies for wind turbines are studied in order to capture maximum wind power. Wind turbines are modeled as two-mass drive-train system. Based on the obtained wind turbine models, variable speed control schemes are investigated for region 2. We designed nonlinear tracking controllers to achieve asymptotic tracking control for given rotor speed reference signals so as to yield maximum wind power capture. Due to the difficulty of torsional angle measurement, we design observed based control with using rotor speed information only to fulfill asymptotic tracking control. The proposed schemes are shown to be able to achieve smooth and asymptotic tracking and illustrated by the given simulation results.

Book Wind Turbine Control Systems

Download or read book Wind Turbine Control Systems written by Fernando D. Bianchi and published by Springer Science & Business Media. This book was released on 2006-09-07 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book emphasizes the application of Linear Parameter Varying (LPV) gain scheduling techniques to the control of wind energy conversion systems. This reformulation of the classical problem of gain scheduling allows straightforward design procedure and simple controller implementation. From an overview of basic wind energy conversion, to analysis of common control strategies, to design details for LPV gain-scheduled controllers for both fixed- and variable-pitch, this is a thorough and informative monograph.

Book Wind Energy Systems

Download or read book Wind Energy Systems written by Mario Garcia-Sanz and published by CRC Press. This book was released on 2012-02-02 with total page 635 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting the latest developments in the field, Wind Energy Systems: Control Engineering Design offers a novel take on advanced control engineering design techniques for wind turbine applications. The book introduces concurrent quantitative engineering techniques for the design of highly efficient and reliable controllers, which can be used to solve the most critical problems of multi-megawatt wind energy systems. This book is based on the authors’ experience during the last two decades designing commercial multi-megawatt wind turbines and control systems for industry leaders, including NASA and the European Space Agency. This work is their response to the urgent need for a truly reliable concurrent engineering methodology for the design of advanced control systems. Outlining a roadmap for such a coordinated architecture, the authors consider the links between all aspects of a multi-megawatt wind energy project, in which the wind turbine and the control system must be cooperatively designed to achieve an optimized, reliable, and successful system. Look inside for links to a free download of QFTCT—a new interactive CAD tool for QFT controller design with MATLAB® that the authors developed with the European Space Agency. The textbook’s big-picture insights can help students and practicing engineers control and optimize a wind energy system, in which large, flexible, aerodynamic structures are connected to a demanding variable electrical grid and work automatically under very turbulent and unpredictable environmental conditions. The book covers topics including robust QFT control, aerodynamics, mechanical and electrical dynamic modeling, economics, reliability, and efficiency. It also addresses standards, certification, implementation, grid integration, and power quality, as well as environmental and maintenance issues. To reinforce understanding, the authors present real examples of experimentation with commercial multi-megawatt direct-drive wind turbines, as well as on-shore, offshore, floating, and airborne wind turbine applications. They also offer a unique in-depth exploration of the quantitative feedback theory (QFT)—a proven, successful robust control technique for real-world applications—as well as advanced switching control techniques that help engineers exceed classical linear limitations.

Book Stability Control and Reliable Performance of Wind Turbines

Download or read book Stability Control and Reliable Performance of Wind Turbines written by Kenneth Eloghene Okedu and published by BoD – Books on Demand. This book was released on 2018-10-10 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for academics and engineers working in universities, research institutes, and industry sectors wishing to acquire new information and enhance their knowledge of the current trends in wind turbine technology. Readers will gain new ideas and special experience with in-depth information about modeling, stability control, assessment, reliability, and future prospects of wind turbines. This book contains a number of problems and solutions that can be integrated into larger research findings and projects. The book enhances studies concerning the state of the art of wind turbines, modeling and intelligent control of wind turbines, power quality of wind turbines, robust controllers for wind turbines in cold weather, etc. The book also looks at recent developments in wind turbine supporting structures, noise reduction estimation methods, reliability and prospects of wind turbines, etc. As I enjoyed preparing this book, I am sure that it will be valuable for a large sector of readers.

Book Model free Optimizing Control for Wind Energy Capture and Controls of Floating Wind Turbines

Download or read book Model free Optimizing Control for Wind Energy Capture and Controls of Floating Wind Turbines written by Zhongyou Wu and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Ramification of wind power generation critically depends on the reduction of its levelized cost of energy (LCOE), for which enhancing the energy capture and reducing the fatigue loads are two major pillars. Development of advanced control strategies for enhancing power capture and reducing the structural loads has become a primary aspect for the operation of individual turbines and the whole wind farm, offshore or onshore. This dissertation research aims to pursue investigations on advanced control strategies that cover both energy capture enhancement and load reduction: 1) extremum seeking based model-free control for enhancing wind turbine and wind farm energy capture with improved convergence, and 2) controls of floating offshore wind turbines (FOWT) with novel actuations. For wind turbine operation below the rated wind speed (i.e. Region 2), the primary control objective for variable-speed variable-pitch turbines is to optimize the generator torque for maximizing the energy capture. Extremum seeking control (ESC) has emerged as an appealing model-free Region-2 control method with much less dependency on turbine characteristics and wind speed measurement. However, the previous work of ESC Region-2 control with the rotor power feedback suffers from undesirable convergence due to wind fluctuation. An estimated power coefficient is proposed as the ESC objective function in order to reduce the sensitivity of the optimum seeking process to wind fluctuation. The hub-height free-stream wind speed is estimated with the nacelle anemometer measurement based on the so-called nacelle transfer function (NTF) derived between the nacelle anemometer and met-tower measurement. Also, an ESC integrated inter-region switching scheme is proposed to avoid the load increase associated with the ESC operation. FAST based simulation study shows that the proposed method achieves more robust convergence to wind fluctuation compared to the power feedback based ESC. For Region-2 control of wind farm operation, the Nested-Loop Extremum Seeking Control (NLESC) has demonstrated its effectiveness in enhancing energy capture at the farm level, however, its convergence speed has been highly limited by the delay of wake propagation between the upstream and downstream turbines as the dither signals for optimizing upstream turbines needs to be of much lower frequencies. In this dissertation research, the NLESC is enhanced with a predictor based delay compensation (DCNLESC), based on which the dither frequencies of upstream turbines can be retained at the level for individual turbine operation. The proposed scheme is validated with a three-turbine model in SimWindFarm. The research FOWT controls is conducted for tensioned-leg platform (TLP), and two novel actuation schemes are proposed for motion stabilization and load reduction: dynamic vibrations absorber (DVA) and active mooring line force control (AMFLC) with fishing line artificial muscle (FLAM) actuator. First proposed is to deploy the vertically operated DVAs at the spokes of TLP structure. Via the Lagrange’s equations, a control-oriented model of 11 degrees-offreedom (DOFs) is derived for the TLP-FOWT-DVA system, with which a linear quadratic regulator (LQR) is designed for stabilizing the platform pitch and roll motion. The LQR controller, turbine controller, as well as the DVA model are implemented in Simulink, which is coupled with the wind turbine model in FAST via a dedicated interface. Simulations are performed for 9 m/s and 18 m/s turbulent winds with different wind and wave directions. The simulation results show that the platform motion and tower loads in the lateral direction and mooring line tension load are significantly reduced, while the tower load in the fore-aft direction can be moderately reduced. For achieving the performance in platform motion stabilization and load reduction, the average power consumption of the DVA actuators is less than 0.27% of the wind turbine power generated during the simulated periods. As for the second concept of TLP-FOWT control, the FLAM actuator is proposed to be deployed to the junction between the mooring lines and TLP spokes, realizing AMLFC of TLP-FOWT. The FLAM actuator consists of multiple bundles of twisted nylon fishing lines, with the contracting and stretching forces induced by thermal actuation. A simulation model of the FLAM actuator is developed in Simulink, along with an interface to the mooring line model of TLP-FOWT in FAST. The dynamic model of the FLAM actuator is obtained with ANSYS simulation, and a control-oriented model is obtained for the FOWT platform motion. First, an LQR controller is implemented to validate the proposed framework. Then, based on the development of dynamic hybrid automata (DHA) model for the TLP-FOWT system with FLAM actuators, a hybrid model predictive controller is developed with the inclusion of information on incoming wind and wave. Simulation study shows that, with mild power consumption, the proposed AMLFC strategy can significantly reduce the platform roll motion and the tower-base side-side bending loads with little impact on the rotor speed and power output.

Book Modeling and Modern Control of Wind Power

Download or read book Modeling and Modern Control of Wind Power written by Qiuwei Wu and published by John Wiley & Sons. This book was released on 2018-02-05 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: An essential reference to the modeling techniques of wind turbine systems for the application of advanced control methods This book covers the modeling of wind power and application of modern control methods to the wind power control—specifically the models of type 3 and type 4 wind turbines. The modeling aspects will help readers to streamline the wind turbine and wind power plant modeling, and reduce the burden of power system simulations to investigate the impact of wind power on power systems. The use of modern control methods will help technology development, especially from the perspective of manufactures. Chapter coverage includes: status of wind power development, grid code requirements for wind power integration; modeling and control of doubly fed induction generator (DFIG) wind turbine generator (WTG); optimal control strategy for load reduction of full scale converter (FSC) WTG; clustering based WTG model linearization; adaptive control of wind turbines for maximum power point tracking (MPPT); distributed model predictive active power control of wind power plants and energy storage systems; model predictive voltage control of wind power plants; control of wind power plant clusters; and fault ride-through capability enhancement of VSC HVDC connected offshore wind power plants. Modeling and Modern Control of Wind Power also features tables, illustrations, case studies, and an appendix showing a selection of typical test systems and the code of adaptive and distributed model predictive control. Analyzes the developments in control methods for wind turbines (focusing on type 3 and type 4 wind turbines) Provides an overview of the latest changes in grid code requirements for wind power integration Reviews the operation characteristics of the FSC and DFIG WTG Presents production efficiency improvement of WTG under uncertainties and disturbances with adaptive control Deals with model predictive active and reactive power control of wind power plants Describes enhanced control of VSC HVDC connected offshore wind power plants Modeling and Modern Control of Wind Power is ideal for PhD students and researchers studying the field, but is also highly beneficial to engineers and transmission system operators (TSOs), wind turbine manufacturers, and consulting companies.

Book Wind Turbine Control and Monitoring

Download or read book Wind Turbine Control and Monitoring written by Ningsu Luo and published by Springer. This book was released on 2014-08-30 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: Maximizing reader insights into the latest technical developments and trends involving wind turbine control and monitoring, fault diagnosis, and wind power systems, ‘Wind Turbine Control and Monitoring’ presents an accessible and straightforward introduction to wind turbines, but also includes an in-depth analysis incorporating illustrations, tables and examples on how to use wind turbine modeling and simulation software. Featuring analysis from leading experts and researchers in the field, the book provides new understanding, methodologies and algorithms of control and monitoring, computer tools for modeling and simulation, and advances the current state-of-the-art on wind turbine monitoring and fault diagnosis; power converter systems; and cooperative & fault-tolerant control systems for maximizing the wind power generation and reducing the maintenance cost. This book is primarily intended for researchers in the field of wind turbines, control, mechatronics and energy; postgraduates in the field of mechanical and electrical engineering; and graduate and senior undergraduate students in engineering wishing to expand their knowledge of wind energy systems. The book will also interest practicing engineers dealing with wind technology who will benefit from the comprehensive coverage of the theoretic control topics, the simplicity of the models and the use of commonly available control algorithms and monitoring techniques.

Book Advanced Control and Optimization Paradigms for Wind Energy Systems

Download or read book Advanced Control and Optimization Paradigms for Wind Energy Systems written by Radu-Emil Precup and published by Springer. This book was released on 2019-02-07 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents advanced studies on the conversion efficiency, mechanical reliability, and the quality of power related to wind energy systems. The main concern regarding such systems is reconciling the highly intermittent nature of the primary source (wind speed) with the demand for high-quality electrical energy and system stability. This means that wind energy conversion within the standard parameters imposed by the energy market and power industry is unachievable without optimization and control. The book discusses the rapid growth of control and optimization paradigms and applies them to wind energy systems: new controllers, new computational approaches, new applications, new algorithms, and new obstacles.

Book Nonlinear Power Flow Control Design

Download or read book Nonlinear Power Flow Control Design written by Rush D. Robinett III and published by Springer Science & Business Media. This book was released on 2011-08-10 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents an innovative control system design process motivated by renewable energy electric grid integration problems. The concepts developed result from the convergence of research and development goals which have important concepts in common: exergy flow, limit cycles, and balance between competing power flows. A unique set of criteria is proposed to design controllers for a class of nonlinear systems. A combination of thermodynamics with Hamiltonian systems provides the theoretical foundation which is then realized in a series of connected case studies. It allows the process of control design to be viewed as a power flow control problem, balancing the power flowing into a system against that being dissipated within it and dependent on the power being stored in it – an interplay between kinetic and potential energies. Human factors and the sustainability of self-organizing systems are dealt with as advanced topics.

Book Model Predictive Control of Wind Energy Conversion Systems

Download or read book Model Predictive Control of Wind Energy Conversion Systems written by Venkata Yaramasu and published by John Wiley & Sons. This book was released on 2016-11-23 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: Model Predictive Control of Wind Energy Conversion Systems addresses the predicative control strategy that has emerged as a promising digital control tool within the field of power electronics, variable-speed motor drives, and energy conversion systems. The authors provide a comprehensive analysis on the model predictive control of power converters employed in a wide variety of variable-speed wind energy conversion systems (WECS). The contents of this book includes an overview of wind energy system configurations, power converters for variable-speed WECS, digital control techniques, MPC, modeling of power converters and wind generators for MPC design. Other topics include the mapping of continuous-time models to discrete-time models by various exact, approximate, and quasi-exact discretization methods, modeling and control of wind turbine grid-side two-level and multilevel voltage source converters. The authors also focus on the MPC of several power converter configurations for full variable-speed permanent magnet synchronous generator based WECS, squirrel-cage induction generator based WECS, and semi-variable-speed doubly fed induction generator based WECS. Furthermore, this book: Analyzes a wide variety of practical WECS, illustrating important concepts with case studies, simulations, and experimental results Provides a step-by-step design procedure for the development of predictive control schemes for various WECS configurations Describes continuous- and discrete-time modeling of wind generators and power converters, weighting factor selection, discretization methods, and extrapolation techniques Presents useful material for other power electronic applications such as variable-speed motor drives, power quality conditioners, electric vehicles, photovoltaic energy systems, distributed generation, and high-voltage direct current transmission. Explores S-Function Builder programming in MATLAB environment to implement various MPC strategies through the companion website Reflecting the latest technologies in the field, Model Predictive Control of Wind Energy Conversion Systems is a valuable reference for academic researchers, practicing engineers, and other professionals. It can also be used as a textbook for graduate-level and advanced undergraduate courses.

Book Dynamic Modeling and Characterization of a Wind Turbine System Leading to Controls Development

Download or read book Dynamic Modeling and Characterization of a Wind Turbine System Leading to Controls Development written by Greg Semrau and published by . This book was released on 2010 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: "With the growing energy demand and need to decrease greenhouse gas emissions there has been a rise in the popularity of renewable energy systems. One of the most popular renewable energy systems over the past decade has been the wind turbine. Technological advances in modeling, prediction, sensing and control combined with the current shift towards decentralized power have prompted development of wind energy systems. Decentralized distribution allows for lower transmission losses because of the closer proximity to the consumer and greater regional control. The wind turbine has positioned itself as the leading energy system to serve as a cornerstone in the development of decentralized energy distribution. This research focuses on the development of a nonlinear dynamic model of a variable speed wind turbine. The modeling effort is followed by model validation against published data. Subsequently, benchmark control problems and existing control strategies are reviewed from literature. Emphasis is placed on variable speed form of operation. Control strategies are studied for two different operating modes of a wind turbine, namely operations below and above the rated-speed. For the former case control design is based on power maximization and for the latter the control design is based on power regulation. For each case, standard control strategies appearing in literature for individual operating regimes are implemented, and thereafter focus is placed on robust performance. Subsequently attempts are made to design new and/or improved strategies. The new control strategies proposed in this research are based on principles from nonlinear control. Furthermore, the research attempts to apply certain relatively new techniques such as extremum-seeking-control to the wind-turbine application. Finally, the research proposes a switching method to combine the control strategies for individual operating regimes."--Abstract.

Book Modeling and Control Aspects of Wind Power Systems

Download or read book Modeling and Control Aspects of Wind Power Systems written by S. M. Muyeen and published by BoD – Books on Demand. This book was released on 2013-03-20 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the recent development and progress of the wind energy conversion system. The chapters are contributed by prominent researchers in the field of wind energy and cover grid integration issues, modern control theories applied in wind energy conversion system, and dynamic and transient stability studies. Modeling and control strategies of different variable speed wind generators such as switched reluctance generator, permanent magnet synchronous generator, doubly-fed induction generator, including the suitable power electronic converter topologies for grid integration, are discussed. Real time control study of wind farm using Real Time Digital Simulator (RTDS) is also included in the book, along with Fault ride through, street light application, integrated power flow solutions, direct power control, wireless coded deadbeat power control, and other interesting topics.

Book Optimal Control of Wind Energy Systems

Download or read book Optimal Control of Wind Energy Systems written by Iulian Munteanu and published by Springer Science & Business Media. This book was released on 2008-02-05 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covering all aspects of this important topic, this work presents a review of the main control issues in wind power generation, offering a unified picture of the issues surrounding its optimal control. Discussion is focused on a global dynamic optimization approach to wind power systems using a set of optimization criteria which comply with a comprehensive group of requirements including: energy conversion efficiency; mechanical reliability; and quality of the energy provided.

Book Robust Control Techniques for DFIG Driven WECS with Improved Efficiency

Download or read book Robust Control Techniques for DFIG Driven WECS with Improved Efficiency written by Ifte Khairul Amin and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Wind energy has emerged as one of the fastest growing renewable energy sources since mid-80's due to its low cost and environmentally friendly nature compared to conventional fossil fuel based power generation. Current technologies for the design and implementation of wind energy conversion systems (WECSs) include induction generator and synchronous generator based units. The doubly fed induction generator (DFIG) is chosen in this thesis because of its economic operation, ability to regulate in sub-synchronous or super-synchronous speed and decoupled control of active and reactive powers. Among the major challenges of wind energy conversion system, extraction of maximum power from intermittent generation and supervision on nonlinear system dynamics of DFIG-WECS are of critical importance. Maximization of the power produced by wind turbine is possible by optimizing tip-speed ratio (TSR), turbine rotor speed or torque and blade angle. The literature reports that a vast number of investigations have been conducted on the maximum power point tracking (MPPT) of wind turbines. Among the reported MPPT control algorithms, the hill climb search (HCS) method is typically preferred because of its simple implementation and turbine parameter-independent scheme. Since the conventional HCS algorithm has few drawbacks such as power fluctuation and speed-efficiency trade-off, a new adaptive step size based HCS controller is developed in this thesis to mitigate its deficiencies by incorporating wind speed measurement in the controller. In addition, a common practice of using linear state-feedback controllers is prevalent in speed and current control of DFIG-based WECS. Traditional feedback linearization controllers are sensitive to system parameter variations and disturbances on grid-connected WECS, which demands advanced control techniques for stable and efficient performance considering the nonlinear system dynamics. An adaptive backstepping based nonlinear control (ABNC) scheme with iron-loss minimization algorithm for RSC control of DFIG is developed in this research work to obtain improved dynamic performance and reduced power loss. The performance of the proposed controller is tested and compared with the benchmark tuned proportional-integral (PI) controller under different operating conditions including variable wind speed, grid voltage disturbance and parameter uncertainties. Test results demonstrate that the proposed method exhibits excellent performance on the rotor side and grid side converter control. In addition, the compliance with the modern grid-code requirements is achieved by featuring a novel controller with disturbance rejection mechanism. In order to reduce the dependency on system's mathematical model, a low computational adaptive network fuzzy interference system (ANFIS) based neuro-fuzzy logic controller (NFC) scheme is developed for DFIG based WECS. The performance of the proposed NFC based DFIG-WECS is tested in simulation to regulate both grid and rotor side converters under normal and voltage dip conditions. Furthermore, a new optimization technique known as grey wolf optimization (GWO) is also designed to regulate the battery power for DFIG driven wind energy system operating in standalone mode. In order to verify the effectiveness of the proposed control schemes, simulation models are designed using Matlab/Simulink. The proposed model for MPPT and nonlinear control of grid-connected mode and GWO based power control of standalone DFIG-WECS has been successfully implemented in the real-time environment using DSP controller board DS1104 for a laboratory 480 VA DFIG. The comparison among different controllers suggests that each control technique has its own specialty in wind power control application with specific merits and shortcomings. However, the PI controller provides fast convergence, the ANFIS based NFC controller has better adaptability under grid disturbances and ABNC has moderate performance. Overall, the thesis provides a detailed overview of different robust control techniques for DFIG driven WECS in grid-connected and standalone operation mode with practical implementation.