EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Nonholonomic Mechanics and Control

Download or read book Nonholonomic Mechanics and Control written by A.M. Bloch and published by Springer. This book was released on 2015-11-05 with total page 582 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores connections between control theory and geometric mechanics. The author links control theory with a geometric view of classical mechanics in both its Lagrangian and Hamiltonian formulations, and in particular with the theory of mechanical systems subject to motion constraints. The synthesis is appropriate as there is a rich connection between mechanics and nonlinear control theory. The book provides a unified treatment of nonlinear control theory and constrained mechanical systems that incorporates material not available in other recent texts. The book benefits graduate students and researchers in the area who want to enhance their understanding and enhance their techniques.

Book Nonholonomic Mechanics and Control

Download or read book Nonholonomic Mechanics and Control written by A.M. Bloch and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores some of the connections between control theory and geometric mechanics; that is, control theory is linked with a geometric view of classical mechanics in both its Lagrangian and Hamiltonian formulations and in particular with the theory of mechanical systems subject to motion constraints. The synthesis of the topic is appropriate as there is a particularly rich connection between mechanics and nonlinear control theory. The book provides a unified treatment of nonlinear control theory and constrained mechanical systems and illustrates the elegant mathematics behind many simple, interesting, and useful mechanical examples. It is intended for graduate students who wish to learn this subject and researchers in the area who want to enhance their techniques. The book contains sections focusing on physical examples and elementary terms, as well as theoretical sections that use sophisticated analysis and geometry. The first four chapters offer preliminaries and background information, while the remaining five are broken down into chapters on nonholonomic mechanics, control and stabilization, optimal control, energy-based, and recent energy-based techniques for mechanical and nonholonomic systems. The second edition of the book extends many of the topics discussed in the first edition to incorporate both new research and more historical background. The additional material includes work on the Hamel equations and quasivelocities, discrete dynamics, bo th holonomic and nonholonomic, Hamiltonization, and the Hamilton-Jacobi equation. In addition new examples and exercises have been added. Review of earlier Edition (A.J. van der Schaft, IEEE Control System Magazine, 2005 ) This book can be read on many different levels and has been described as a "delightful book that will be valuable for both the control community and researchers" .

Book Nonholonomic Geometry  Mechanics and Control

Download or read book Nonholonomic Geometry Mechanics and Control written by Rui Yang and published by . This book was released on 1992 with total page 163 pages. Available in PDF, EPUB and Kindle. Book excerpt: The motions of various mechanical systems which we wish to synthesize and control often have to satisfy certain kinds of restrictions imposed by the natural environment or the structure of the systems themselves. In mechanics, such restrictions are called constraints. Although the fundamental theory of mechanical systems with constraints was established and developed in the last century, recent research and developments in analytical mechanics and control theory from a geometric viewpoint have inspired a strong desire to reinterpret and reformulate the theory of constrained dynamics in an intrinsic geometric way. In addition, many practical problems in recent investigations in mechanical and electrical engineering, such as modeling and control of mobile robots and dextrons robotic hands, and the design and control of spacecraft, also show the need for a deeper understanding of the role that constraints play in mechanical systems.

Book Geometric  Control and Numerical Aspects of Nonholonomic Systems

Download or read book Geometric Control and Numerical Aspects of Nonholonomic Systems written by Jorge Cortés Monforte and published by Springer. This book was released on 2004-10-19 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonholonomic systems are a widespread topic in several scientific and commercial domains, including robotics, locomotion and space exploration. This work sheds new light on this interdisciplinary character through the investigation of a variety of aspects coming from several disciplines. The main aim is to illustrate the idea that a better understanding of the geometric structures of mechanical systems unveils new and unknown aspects to them, and helps both analysis and design to solve standing problems and identify new challenges. In this way, separate areas of research such as Classical Mechanics, Differential Geometry, Numerical Analysis or Control Theory are brought together in this study of nonholonomic systems.

Book Nonholonomic Mechanics and Control

Download or read book Nonholonomic Mechanics and Control written by A.M. Bloch and published by Springer Science & Business Media. This book was released on 2007-09-27 with total page 501 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores connections between control theory and geometric mechanics. The author links control theory with a geometric view of classical mechanics in both its Lagrangian and Hamiltonian formulations, and in particular with the theory of mechanical systems subject to motion constraints. The synthesis is appropriate as there is a rich connection between mechanics and nonlinear control theory. The book provides a unified treatment of nonlinear control theory and constrained mechanical systems that incorporates material not available in other recent texts. The book benefits graduate students and researchers in the area who want to enhance their understanding and enhance their techniques.

Book Nonholonomic Motion Planning

Download or read book Nonholonomic Motion Planning written by Zexiang Li and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonholonomic Motion Planning grew out of the workshop that took place at the 1991 IEEE International Conference on Robotics and Automation. It consists of contributed chapters representing new developments in this area. Contributors to the book include robotics engineers, nonlinear control experts, differential geometers and applied mathematicians. Nonholonomic Motion Planning is arranged into three chapter groups: Controllability: one of the key mathematical tools needed to study nonholonomic motion. Motion Planning for Mobile Robots: in this section the papers are focused on problems with nonholonomic velocity constraints as well as constraints on the generalized coordinates. Falling Cats, Space Robots and Gauge Theory: there are numerous connections to be made between symplectic geometry techniques for the study of holonomies in mechanics, gauge theory and control. In this section these connections are discussed using the backdrop of examples drawn from space robots and falling cats reorienting themselves. Nonholonomic Motion Planning can be used either as a reference for researchers working in the areas of robotics, nonlinear control and differential geometry, or as a textbook for a graduate level robotics or nonlinear control course.

Book Geometric Control and Non holonomic Mechanics

Download or read book Geometric Control and Non holonomic Mechanics written by Velimir Jurdjevic and published by American Mathematical Soc.. This book was released on 1998 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Control theory, a synthesis of geometric theory of differential equations enriched with variational principles and the associated symplectic geometry, emerges as a new mathematical subject of interest to engineers, mathematicians, and physicists. This collection of articles focuses on several distinctive research directions having origins in mechanics and differential geometry, but driven by modern control theory. The first of these directions deals with the singularities of small balls for problems of sub-Riemannian geomtery and provides a generic classification of singularities for two-dimensional distributions of contact type in a three-dimensional ambient space. The second direction deals with invariant optimal problems on Lie groups exemplified through the problem of Dublins extended to symmetric spaces, the elastic problem of Kirchhoff and its relation to the heavy top. The results described in the book are explicit and demonstrate convincingly the power of geometric formalism. The remaining directions deal with the geometric nature of feedback analysed through the language of fiber bundles, and the connections of geometric control to non-holonomic problems in mechanics, as exemplified through the motions of a sphere on surfaces of revolution. This book provides quick access to new research directions in geometric control theory. It also demonstrates the effectiveness of new insights and methods that control theory brings to mechanics and geometry.

Book Kinematics and Dynamics of Multi Body Systems

Download or read book Kinematics and Dynamics of Multi Body Systems written by J. Angeles and published by Springer. This book was released on 2014-05-04 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Three main disciplines in the area of multibody systems are covered: kinematics, dynamics, and control, as pertaining to systems that can be modelled as coupling or rigid bodies. The treatment is intended to give a state of the art of the topics discussed.

Book Dynamical Systems and Geometric Mechanics

Download or read book Dynamical Systems and Geometric Mechanics written by Jared Maruskin and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-08-21 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Dynamical Systems and Geometric Mechanics provides a comprehensive tour of two fields that are intimately entwined: dynamical systems is the study of the behavior of physical systems that may be described by a set of nonlinear first-order ordinary differential equations in Euclidean space, whereas geometric mechanics explore similar systems that instead evolve on differentiable manifolds. The first part discusses the linearization and stability of trajectories and fixed points, invariant manifold theory, periodic orbits, Poincaré maps, Floquet theory, the Poincaré-Bendixson theorem, bifurcations, and chaos. The second part of the book begins with a self-contained chapter on differential geometry that introduces notions of manifolds, mappings, vector fields, the Jacobi-Lie bracket, and differential forms.

Book Nonholonomic Motion of Rigid Mechanical Systems from a DAE Viewpoint

Download or read book Nonholonomic Motion of Rigid Mechanical Systems from a DAE Viewpoint written by Patrick J. Rabier and published by SIAM. This book was released on 2000-01-01 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focuses on rigid body systems subjected to kinematic constraints and discusses in detail how the equations of motion are developed. The authors show that such motions can be modeled in terms of differential algebraic equations (DAEs), provided only that the correct variables are introduced.

Book On Geometric Control Design for Holonomic and Nonholonomic Mechanical Systems

Download or read book On Geometric Control Design for Holonomic and Nonholonomic Mechanical Systems written by Jason M. Osborne and published by . This book was released on 2007 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: An overarching and unifying theme for this document is that viewing mechanical systems through a geometric lens opens up an extensive set of tools that can be brought to bear upon energy, mass, and system---conscious control design for constrained mechanical systems. To demonstrate this thesis we consider the dynamics and control for several mechanical systems.

Book Modern Robotics

    Book Details:
  • Author : Kevin M. Lynch
  • Publisher : Cambridge University Press
  • Release : 2017-05-25
  • ISBN : 1107156300
  • Pages : 545 pages

Download or read book Modern Robotics written by Kevin M. Lynch and published by Cambridge University Press. This book was released on 2017-05-25 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: A modern and unified treatment of the mechanics, planning, and control of robots, suitable for a first course in robotics.

Book Control of Nonholonomic Systems  from Sub Riemannian Geometry to Motion Planning

Download or read book Control of Nonholonomic Systems from Sub Riemannian Geometry to Motion Planning written by Frédéric Jean and published by Springer. This book was released on 2014-07-17 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonholonomic systems are control systems which depend linearly on the control. Their underlying geometry is the sub-Riemannian geometry, which plays for these systems the same role as Euclidean geometry does for linear systems. In particular the usual notions of approximations at the first order, that are essential for control purposes, have to be defined in terms of this geometry. The aim of these notes is to present these notions of approximation and their application to the motion planning problem for nonholonomic systems.

Book Geometry  Mechanics  and Dynamics

Download or read book Geometry Mechanics and Dynamics written by Dong Eui Chang and published by Springer. This book was released on 2015-04-16 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book illustrates the broad range of Jerry Marsden’s mathematical legacy in areas of geometry, mechanics, and dynamics, from very pure mathematics to very applied, but always with a geometric perspective. Each contribution develops its material from the viewpoint of geometric mechanics beginning at the very foundations, introducing readers to modern issues via illustrations in a wide range of topics. The twenty refereed papers contained in this volume are based on lectures and research performed during the month of July 2012 at the Fields Institute for Research in Mathematical Sciences, in a program in honor of Marsden's legacy. The unified treatment of the wide breadth of topics treated in this book will be of interest to both experts and novices in geometric mechanics. Experts will recognize applications of their own familiar concepts and methods in a wide variety of fields, some of which they may never have approached from a geometric viewpoint. Novices may choose topics that interest them among the various fields and learn about geometric approaches and perspectives toward those topics that will be new for them as well.

Book Geometry  Mechanics  and Control in Action for the Falling Cat

Download or read book Geometry Mechanics and Control in Action for the Falling Cat written by Toshihiro Iwai and published by Springer Nature. This book was released on 2021-04-23 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: The falling cat is an interesting theme to pursue, in which geometry, mechanics, and control are in action together. As is well known, cats can almost always land on their feet when tossed into the air in an upside-down attitude. If cats are not given a non-vanishing angular momentum at an initial instant, they cannot rotate during their motion, and the motion they can make in the air is vibration only. However, cats accomplish a half turn without rotation when landing on their feet. In order to solve this apparent mystery, one needs to thoroughly understand rotations and vibrations. The connection theory in differential geometry can provide rigorous definitions of rotation and vibration for many-body systems. Deformable bodies of cats are not easy to treat mechanically. A feasible way to approach the question of the falling cat is to start with many-body systems and then proceed to rigid bodies and, further, to jointed rigid bodies, which can approximate the body of a cat. In this book, the connection theory is applied first to a many-body system to show that vibrational motions of the many-body system can result in rotations without performing rotational motions and then to the cat model consisting of jointed rigid bodies. On the basis of this geometric setting, mechanics of many-body systems and of jointed rigid bodies must be set up. In order to take into account the fact that cats can deform their bodies, three torque inputs which may give a twist to the cat model are applied as control inputs under the condition of the vanishing angular momentum. Then, a control is designed according to the port-controlled Hamiltonian method for the model cat to perform a half turn and to halt the motion upon landing. The book also gives a brief review of control systems through simple examples to explain the role of control inputs.

Book Dynamics and Control of Mechanical Systems  The Falling Cat and Related Problems

Download or read book Dynamics and Control of Mechanical Systems The Falling Cat and Related Problems written by Michael J. Enos and published by American Mathematical Soc.. This book was released on 1993 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a collection of papers presented at the Fields Institute workshop, ``The Falling Cat and Related Problems,'' held in March 1992. The theme of the workshop was the application of methods from geometric mechanics and mathematical control theory to problems in the dynamics and control of freely rotating systems of coupled rigid bodies and related nonholonomic mechanical systems. This book will prove useful in providing insight into this new and exciting area of research.

Book Global Formulation and Control of a Class Nonholonomic Systems

Download or read book Global Formulation and Control of a Class Nonholonomic Systems written by Muhammad Rehan and published by . This book was released on 2018 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis study motion of a class of non-holonomic systems using geometric mechanics, that provide us an efficient way to formulate and analyze the dynamics and their temporal evolution on the configuration manifold. The kinematics equations of the system, viewed as a rigid body, are constrained by the requirement that the system maintain contact with the surface. They describe the constrained translation of the point of contact on the surface. In this thesis, we have considered three different examples with nonholonomic constraint i-e knife edge or pizza cutter, a circular disk rolling without slipping, and rolling sphere. For each example, the kinematics equations of the system are defined without the use of local coordinates, such that the model is globally defined on the manifold without singularities or ambiguities. Simulation results are included that show effectiveness of the proposed control laws.