Download or read book Noncommutative Geometry And Physics 2005 Proceedings Of The International Sendai beijing Joint Workshop written by Ursula Carow-watamura and published by World Scientific. This book was released on 2007-08-31 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: Noncommutative geometry is a novel approach which is opening up new possibilities for geometry from a mathematical viewpoint. It is also providing new tools for the investigation of quantum space-time in physics. Recent developments in string theory have supported the idea of quantum spaces, and have strongly stimulated the research in this field. This self-contained volume contains survey lectures and research articles which address these issues and related topics. The book is accessible to both researchers and graduate students beginning to study this subject.
Download or read book Noncommutative Geometry And Physics 3 Proceedings Of The Noncommutative Geometry And Physics 2008 On K theory And D branes Proceedings Of The Rims Thematic Year 2010 On Perspectives In Deformation Quantization And Noncommutative Geometry written by Giuseppe Dito and published by World Scientific. This book was released on 2013-01-11 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: Noncommutative differential geometry is a novel approach to geometry, aimed in part at applications in physics. It was founded in the early eighties by the 1982 Fields Medalist Alain Connes on the basis of his fundamental works in operator algebras. It is now a very active branch of mathematics with actual and potential applications to a variety of domains in physics ranging from solid state to quantization of gravity. The strategy is to formulate usual differential geometry in a somewhat unusual manner, using in particular operator algebras and related concepts, so as to be able to plug in noncommutativity in a natural way. Algebraic tools such as K-theory and cyclic cohomology and homology play an important role in this field. It is an important topic both for mathematics and physics.
Download or read book Noncommutative Geometry and Physics 2005 written by Ursula Carow-Watamura and published by World Scientific. This book was released on 2007 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: Noncommutative geometry is a novel approach which is opening up new possibilities for geometry from a mathematical viewpoint. It is also providing new tools for the investigation of quantum space?time in physics. Recent developments in string theory have supported the idea of quantum spaces, and have strongly stimulated the research in this field. This self-contained volume contains survey lectures and research articles which address these issues and related topics. The book is accessible to both researchers and graduate students beginning to study this subject.
Download or read book Hokkaido Mathematical Journal written by and published by . This book was released on 2011-02 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Introduction to Quantum Information Science written by Masahito Hayashi and published by Springer. This book was released on 2014-08-22 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the basics of quantum information, e.g., foundation of quantum theory, quantum algorithms, quantum entanglement, quantum entropies, quantum coding, quantum error correction and quantum cryptography. The required knowledge is only elementary calculus and linear algebra. This way the book can be understood by undergraduate students. In order to study quantum information, one usually has to study the foundation of quantum theory. This book describes it from more an operational viewpoint which is suitable for quantum information while traditional textbooks of quantum theory lack this viewpoint. The current book bases on Shor's algorithm, Grover's algorithm, Deutsch-Jozsa's algorithm as basic algorithms. To treat several topics in quantum information, this book covers several kinds of information quantities in quantum systems including von Neumann entropy. The limits of several kinds of quantum information processing are given. As important quantum protocols, this book contains quantum teleportation, quantum dense coding, quantum data compression. In particular conversion theory of entanglement via local operation and classical communication are treated too. This theory provides the quantification of entanglement, which coincides with von Neumann entropy. The next part treats the quantum hypothesis testing. The decision problem of two candidates of the unknown state are given. The asymptotic performance of this problem is characterized by information quantities. Using this result, the optimal performance of classical information transmission via noisy quantum channel is derived. Quantum information transmission via noisy quantum channel by quantum error correction are discussed too. Based on this topic, the secure quantum communication is explained. In particular, the quantification of quantum security which has not been treated in existing book is explained. This book treats quantum cryptography from a more practical viewpoint.
Download or read book Quantum Information Theory written by Mark M. Wilde and published by Cambridge University Press. This book was released on 2017-02-06 with total page 1020 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developing many of the major, exciting, pre- and post-millennium developments from the ground up, this book is an ideal entry point for graduate students into quantum information theory. Significant attention is given to quantum mechanics for quantum information theory, and careful studies of the important protocols of teleportation, superdense coding, and entanglement distribution are presented. In this new edition, readers can expect to find over 100 pages of new material, including detailed discussions of Bell's theorem, the CHSH game, Tsirelson's theorem, the axiomatic approach to quantum channels, the definition of the diamond norm and its interpretation, and a proof of the Choi–Kraus theorem. Discussion of the importance of the quantum dynamic capacity formula has been completely revised, and many new exercises and references have been added. This new edition will be welcomed by the upcoming generation of quantum information theorists and the already established community of classical information theorists.
Download or read book Nonperturbative Quantum Field Theory written by G. Hooft and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 603 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the past 15 years, quantum field theory and classical statistical mechanics have merged into a single field, and the need for nonperturbative methods for the description of critical phenomena in statistical mechanics as well as for problems in elementary particle physics are generally acknowledged. Such methods formed the central theme of the 1987 Cargese Advanced Study Institut. e on "Nonpert. urbat. ive Quantum Field Theory." The use of conformal symmet. ry has been of central interest in recent years, and was a main subject at. t. he ASI. Conformal invariant quantum field theory describes statistical mechanical systems exactly at a critical point, and can be analysed to a remarkable ext. ent. by group t. heoretical methods. Very strong results have been obtained for 2-dimensional systems. Conformal field theory is also the basis of string theory, which offers some hope of providing a unified t. heory of all interactions between elementary particles. Accordingly, a number of lectures and seminars were presented on these two topics. After syst. ematic introductory lectures, conformal field theory on Riemann surfaces, orbifolds, sigma models, and application of loop group theory and Grassmannians were discussed, and some ideas on modular geometry were presented. Other lectures combined' traditional techniques of constructive quant. um field theory with new methods such as the use of index-t. heorems and infinite dimensional (Kac Moody) symmetry groups. The problems encountered in a quantum mechanical description of black holes were discussed in detail.
Download or read book Number Theory and Algebraic Geometry written by Miles Reid and published by Cambridge University Press. This book was released on 2003 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume honors Sir Peter Swinnerton-Dyer's mathematical career spanning more than 60 years' of amazing creativity in number theory and algebraic geometry.
Download or read book A Mathematical Gift III written by Koji Shiga and published by American Mathematical Society. This book was released on 2005-07-18 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings the beauty and fun of mathematics to the classroom. It offers serious mathematics in a lively, reader-friendly style. Included are exercises and many figures illustrating the main concepts. The first chapter talks about the theory of manifolds. It includes discussion of smoothness, differentiability, and analyticity, the idea of local coordinates and coordinate transformation, and a detailed explanation of the Whitney imbedding theorem (both in weak and in strong form).The second chapter discusses the notion of the area of a figure on the plane and the volume of a solid body in space. It includes the proof of the Bolyai-Gerwien theorem about scissors-congruent polynomials and Dehn's solution of the Third Hilbert Problem. This is the third volume originating from a series of lectures given at Kyoto University (Japan). It is suitable for classroom use for high school mathematics teachers and for undergraduate mathematics courses in the sciences and liberal arts. The first and second volumes are available as Volume 19 and Volume 20 in the AMS series, ""Mathematical World"".
Download or read book A Group Theoretic Approach to Quantum Information written by Masahito Hayashi and published by Springer. This book was released on 2016-10-31 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first one addressing quantum information from the viewpoint of group symmetry. Quantum systems have a group symmetrical structure. This structure enables to handle systematically quantum information processing. However, there is no other textbook focusing on group symmetry for quantum information although there exist many textbooks for group representation. After the mathematical preparation of quantum information, this book discusses quantum entanglement and its quantification by using group symmetry. Group symmetry drastically simplifies the calculation of several entanglement measures although their calculations are usually very difficult to handle. This book treats optimal information processes including quantum state estimation, quantum state cloning, estimation of group action and quantum channel etc. Usually it is very difficult to derive the optimal quantum information processes without asymptotic setting of these topics. However, group symmetry allows to derive these optimal solutions without assuming the asymptotic setting. Next, this book addresses the quantum error correcting code with the symmetric structure of Weyl-Heisenberg groups. This structure leads to understand the quantum error correcting code systematically. Finally, this book focuses on the quantum universal information protocols by using the group SU(d). This topic can be regarded as a quantum version of the Csiszar-Korner's universal coding theory with the type method. The required mathematical knowledge about group representation is summarized in the companion book, Group Representation for Quantum Theory.
Download or read book Group Representation for Quantum Theory written by Masahito Hayashi and published by Springer. This book was released on 2016-11-18 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains the group representation theory for quantum theory in the language of quantum theory. As is well known, group representation theory is very strong tool for quantum theory, in particular, angular momentum, hydrogen-type Hamiltonian, spin-orbit interaction, quark model, quantum optics, and quantum information processing including quantum error correction. To describe a big picture of application of representation theory to quantum theory, the book needs to contain the following six topics, permutation group, SU(2) and SU(d), Heisenberg representation, squeezing operation, Discrete Heisenberg representation, and the relation with Fourier transform from a unified viewpoint by including projective representation. Unfortunately, although there are so many good mathematical books for a part of six topics, no book contains all of these topics because they are too segmentalized. Further, some of them are written in an abstract way in mathematical style and, often, the materials are too segmented. At least, the notation is not familiar to people working with quantum theory. Others are good elementary books, but do not deal with topics related to quantum theory. In particular, such elementary books do not cover projective representation, which is more important in quantum theory. On the other hand, there are several books for physicists. However, these books are too simple and lack the detailed discussion. Hence, they are not useful for advanced study even in physics. To resolve this issue, this book starts with the basic mathematics for quantum theory. Then, it introduces the basics of group representation and discusses the case of the finite groups, the symmetric group, e.g. Next, this book discusses Lie group and Lie algebra. This part starts with the basics knowledge, and proceeds to the special groups, e.g., SU(2), SU(1,1), and SU(d). After the special groups, it explains concrete applications to physical systems, e.g., angular momentum, hydrogen-type Hamiltonian, spin-orbit interaction, and quark model. Then, it proceeds to the general theory for Lie group and Lie algebra. Using this knowledge, this book explains the Bosonic system, which has the symmetries of Heisenberg group and the squeezing symmetry by SL(2,R) and Sp(2n,R). Finally, as the discrete version, this book treats the discrete Heisenberg representation which is related to quantum error correction. To enhance readers' undersnding, this book contains 54 figures, 23 tables, and 111 exercises with solutions.
Download or read book Medical Image Computing and Computer Assisted Intervention MICCAI 2012 written by Nicholas Ayache and published by Springer. This book was released on 2012-08-28 with total page 645 pages. Available in PDF, EPUB and Kindle. Book excerpt: The three-volume set LNCS 7510, 7511, and 7512 constitutes the refereed proceedings of the 15th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2012, held in Nice, France, in October 2012. Based on rigorous peer reviews, the program committee carefully selected 252 revised papers from 781 submissions for presentation in three volumes. The third volume includes 79 papers organized in topical sections on diffusion imaging: from acquisition to tractography; image acquisition, segmentation and recognition; image registration; neuroimage analysis; analysis of microscopic and optical images; image segmentation; diffusion weighted imaging; computer-aided diagnosis and planning; and microscopic image analysis.
Download or read book Quantum Fields and Strings A Course for Mathematicians written by Pierre Deligne and published by American Mathematical Society. This book was released on 1999-10-25 with total page 801 pages. Available in PDF, EPUB and Kindle. Book excerpt: A run-away bestseller from the moment it hit the market in late 1999. This impressive, thick softcover offers mathematicians and mathematical physicists the opportunity to learn about the beautiful and difficult subjects of quantum field theory and string theory. Cover features an intriguing cartoon that will bring a smile to its intended audience.
Download or read book Lectures on Field Theory and Topology written by Daniel S. Freed and published by American Mathematical Soc.. This book was released on 2019-08-23 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: These lectures recount an application of stable homotopy theory to a concrete problem in low energy physics: the classification of special phases of matter. While the joint work of the author and Michael Hopkins is a focal point, a general geometric frame of reference on quantum field theory is emphasized. Early lectures describe the geometric axiom systems introduced by Graeme Segal and Michael Atiyah in the late 1980s, as well as subsequent extensions. This material provides an entry point for mathematicians to delve into quantum field theory. Classification theorems in low dimensions are proved to illustrate the framework. The later lectures turn to more specialized topics in field theory, including the relationship between invertible field theories and stable homotopy theory, extended unitarity, anomalies, and relativistic free fermion systems. The accompanying mathematical explanations touch upon (higher) category theory, duals to the sphere spectrum, equivariant spectra, differential cohomology, and Dirac operators. The outcome of computations made using the Adams spectral sequence is presented and compared to results in the condensed matter literature obtained by very different means. The general perspectives and specific applications fuse into a compelling story at the interface of contemporary mathematics and theoretical physics.
Download or read book Geometric Mechanics written by Waldyr Muniz Oliva and published by Springer. This book was released on 2004-10-23 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometric Mechanics here means mechanics on a pseudo-riemannian manifold and the main goal is the study of some mechanical models and concepts, with emphasis on the intrinsic and geometric aspects arising in classical problems. The first seven chapters are written in the spirit of Newtonian Mechanics while the last two ones as well as two of the four appendices describe the foundations and some aspects of Special and General Relativity. All the material has a coordinate free presentation but, for the sake of motivation, many examples and exercises are included in order to exhibit the desirable flavor of physical applications.
Download or read book Topology And Physics written by Chen Ning Yang and published by World Scientific. This book was released on 2019-01-09 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'The book is an engaging and influential collection of significant contributions from an assembly of world expert leaders and pioneers from different fields, working at the interface between topology and physics or applications of topology to physical systems … The book explores many interesting and novel topics that lie at the intersection between gravity, quantum fields, condensed matter, physical cosmology and topology … A rich, well-organized, and comprehensive overview of remarkable and insightful connections between physics and topology is here made available to the physics reader.'Contemporary PhysicsSince its birth in Poincaré's seminal 1894 'Analysis Situs', topology has become a cornerstone of mathematics. As with all beautiful mathematical concepts, topology inevitably — resonating with that Wignerian principle of the effectiveness of mathematics in the natural sciences — finds its prominent role in physics. From Chern-Simons theory to topological quantum field theory, from knot invariants to Calabi-Yau compactification in string theory, from spacetime topology in cosmology to the recent Nobel Prize winning work on topological insulators, the interactions between topology and physics have been a triumph over the past few decades.In this eponymous volume, we are honoured to have contributions from an assembly of grand masters of the field, guiding us with their world-renowned expertise on the subject of the interplay between 'Topology' and 'Physics'. Beginning with a preface by Chen Ning Yang on his recollections of the early days, we proceed to a novel view of nuclei from the perspective of complex geometry by Sir Michael Atiyah and Nick Manton, followed by an entrée toward recent developments in two-dimensional gravity and intersection theory on the moduli space of Riemann surfaces by Robbert Dijkgraaf and Edward Witten; a study of Majorana fermions and relations to the Braid group by Louis H Kauffman; a pioneering investigation on arithmetic gauge theory by Minhyong Kim; an anecdote-enriched review of singularity theorems in black-hole physics by Sir Roger Penrose; an adventure beyond anyons by Zhenghan Wang; an aperçu on topological insulators from first-principle calculations by Haijun Zhang and Shou-Cheng Zhang; finishing with synopsis on quantum information theory as one of the four revolutions in physics and the second quantum revolution by Xiao-Gang Wen. We hope that this book will serve to inspire the research community.
Download or read book Classical and Quantum Information written by Dan C. Marinescu and published by Academic Press. This book was released on 2011-01-07 with total page 745 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new discipline, Quantum Information Science, has emerged in the last two decades of the twentieth century at the intersection of Physics, Mathematics, and Computer Science. Quantum Information Processing is an application of Quantum Information Science which covers the transformation, storage, and transmission of quantum information; it represents a revolutionary approach to information processing. Classical and Quantum Information covers topics in quantum computing, quantum information theory, and quantum error correction, three important areas of quantum information processing. Quantum information theory and quantum error correction build on the scope, concepts, methodology, and techniques developed in the context of their close relatives, classical information theory and classical error correcting codes. - Presents recent results in quantum computing, quantum information theory, and quantum error correcting codes - Covers both classical and quantum information theory and error correcting codes - The last chapter of the book covers physical implementation of quantum information processing devices - Covers the mathematical formalism and the concepts in Quantum Mechanics critical for understanding the properties and the transformations of quantum information