EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Non Linear Computer Models of Field Effect Transistors

Download or read book Non Linear Computer Models of Field Effect Transistors written by Arthur David Rathjen and published by . This book was released on 1970 with total page 52 pages. Available in PDF, EPUB and Kindle. Book excerpt: Whenever active devices are included in an electronic circuit that is to be analyzed by a computer, appropriate models for these devices must be developed. A lumped large-signal dynamic model of the field-effect transistor (FET) is presented and the procedure for pointwise linearization of this model is described. This linearized model is suitable for use with the TRAC (Transient Radiation Analysis by Computer program) network analysis program. Implementation of this model using TRAC coding was demonstrated by programming an example circuit for each of two basic types of field-effect transistor. The performance of the model in simulating a basic pulse invertor circuit was compared with actual device behavior. Suggestions for extension of this work are included. (Author).

Book Nonlinear Computer Models of Field Effect Transistors

Download or read book Nonlinear Computer Models of Field Effect Transistors written by and published by . This book was released on 1970 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Whenever active devices are included in an electronic circuit that is to be analyzed by a computer, appropriate models for these devices must be developed. A lumped large-signal dynamic model of the field-effect transistor (FET) is presented and the procedure for pointwise linearization of this model is described. This linearized model is suitable for use with the TRAC (Transient Radiation Analysis by Computer program) network analysis program. Implementation of this model using TRAC coding was demonstrated by programming an example circuit for each of two basic types of field-effect transistor. The performance of the model in simulating a basic pulse invertor circuit was compared with actual device behavior. Suggestions for extension of this work are included. (Author).

Book Computer Models of the Field effect Transistor

Download or read book Computer Models of the Field effect Transistor written by Ben David Roberts (Jr.) and published by . This book was released on 1967 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: Network analysis programs may be used to analyze complex electronic circuits. This requires that models for the active devices in these circuits be developed. A nonlinear model of the field-effect transistor is presented for use in large-signal applications. From this model several piecewise-linear models suitable for use with Electronic Circuit Analysis Program (ECAP) are derived. The approximations required in these models are evaluated, and models intended for use in pulse inverters and choppers are presented. Techniques for measuring the parameters in the models are described and results of the measurement of these parameters for a sample of field-effect transistors are given. Finally, the behavior of a sample of these devices in pulse inverter and chopper circuits is compared to the behavior of the device models in computer simulation of the circuits. (Author).

Book Parameter Extraction and Complex Nonlinear Transistor Models

Download or read book Parameter Extraction and Complex Nonlinear Transistor Models written by Gunter Kompa and published by Artech House. This book was released on 2019-12-31 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: All model parameters are fundamentally coupled together, so that directly measured individual parameters, although widely used and accepted, may initially only serve as good estimates. This comprehensive resource presents all aspects concerning the modeling of semiconductor field-effect device parameters based on gallium-arsenide (GaAs) and gallium nitride (GaN) technology. Metal-semiconductor field-effect transistors (MESFETs), high electron mobility transistors (HEMTs) and heterojunction bipolar transistors (HBTs), their structures and functions, and existing transistor models are also classified. The Shockley model is presented in order to give insight into semiconductor field-effect transistor (FET) device physics and explain the relationship between geometric and material parameters and device performance. Extraction of trapping and thermal time constants is discussed. A special section is devoted to standard nonlinear FET models applied to large-signal measurements, including static-/pulsed-DC and single-/two-tone stimulation. High power measurement setups for signal waveform measurement, wideband source-/load-pull measurement (including envelope source-/load pull) are also included, along with high-power intermodulation distortion (IMD) measurement setup (including envelope load-pull). Written by a world-renowned expert in the field, this book is the first to cover of all aspects of semiconductor FET device modeling in a single volume.

Book Nonlinear Transistor Model Parameter Extraction Techniques

Download or read book Nonlinear Transistor Model Parameter Extraction Techniques written by Matthias Rudolph and published by Cambridge University Press. This book was released on 2011-10-13 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: Achieve accurate and reliable parameter extraction using this complete survey of state-of-the-art techniques and methods. A team of experts from industry and academia provides you with insights into a range of key topics, including parasitics, intrinsic extraction, statistics, extraction uncertainty, nonlinear and DC parameters, self-heating and traps, noise, and package effects. Learn how similar approaches to parameter extraction can be applied to different technologies. A variety of real-world industrial examples and measurement results show you how the theories and methods presented can be used in practice. Whether you use transistor models for evaluation of device processing and you need to understand the methods behind the models you use, or you want to develop models for existing and new device types, this is your complete guide to parameter extraction.

Book Time Domain Computer Analysis of Nonlinear Hybrid Systems

Download or read book Time Domain Computer Analysis of Nonlinear Hybrid Systems written by Wenquan Sui and published by CRC Press. This book was released on 2018-10-08 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: The analysis of nonlinear hybrid electromagnetic systems poses significant challenges that essentially demand reliable numerical methods. In recent years, research has shown that finite-difference time-domain (FDTD) cosimulation techniques hold great potential for future designs and analyses of electrical systems. Time-Domain Computer Analysis of Nonlinear Hybrid Systems summarizes and reviews more than 10 years of research in FDTD cosimulation. It first provides a basic overview of the electromagnetic theory, the link between field theory and circuit theory, transmission line theory, finite-difference approximation, and analog circuit simulation. The author then extends the basic theory of FDTD cosimulation to focus on techniques for time-domain field solving, analog circuit analysis, and integration of other lumped systems, such as n-port nonlinear circuits, into the field-solving scheme. The numerical cosimulation methods described in this book and proven in various applications can effectively simulate hybrid circuits that other techniques cannot. By incorporating recent, new, and previously unpublished results, this book effectively represents the state of the art in FDTD techniques. More detailed studies are needed before the methods described are fully developed, but the discussions in this book build a good foundation for their future perfection.

Book Advanced Field Effect Transistors

Download or read book Advanced Field Effect Transistors written by Dharmendra Singh Yadav and published by CRC Press. This book was released on 2023-12-22 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Field-Effect Transistors: Theory and Applications offers a fresh perspective on the design and analysis of advanced field-effect transistor (FET) devices and their applications. The text emphasizes both fundamental and new paradigms that are essential for upcoming advancement in the field of transistors beyond complementary metal–oxide–semiconductors (CMOS). This book uses lucid, intuitive language to gradually increase the comprehension of readers about the key concepts of FETs, including their theory and applications. In order to improve readers’ learning opportunities, Advanced Field-Effect Transistors: Theory and Applications presents a wide range of crucial topics: Design and challenges in tunneling FETs Various modeling approaches for FETs Study of organic thin-film transistors Biosensing applications of FETs Implementation of memory and logic gates with FETs The advent of low-power semiconductor devices and related implications for upcoming technology nodes provide valuable insight into low-power devices and their applicability in wireless, biosensing, and circuit aspects. As a result, researchers are constantly looking for new semiconductor devices to meet consumer demand. This book gives more details about all aspects of the low-power technology, including ongoing and prospective circumstances with fundamentals of FET devices as well as sophisticated low-power applications.

Book FET Modeling for Circuit Simulation

Download or read book FET Modeling for Circuit Simulation written by Dileep A. Divekar and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: Circuit simulation is widely used for the design of circuits, both discrete and integrated. Device modeling is an impor tant aspect of circuit simulation since it is the link between the physical device and the sim ulate d device. Curren tly available circuit simulation programs provide a variety of built-in models. Many circuit designers use these built-in models whereas some incorporate new models in the circuit sim ulation programs. Understanding device modeling with particular emphasis on circuit simulation will be helpful in utilizing the built-in models more efficiently as well as in implementing new models. SPICE is used as a vehicle since it is the most widely used circuit sim ulation program. How ever, some issues are addressed which are not directly appli cable to SPICE but are applicable to circuit simulation in general. These discussions are useful for modifying SPICE and for understanding other simulation programs. The gen eric version 2G. 6 is used as a reference for SPICE, although numerous different versions exist with different modifications. This book describes field effect transistor models commonly used in a variety of circuit sim ulation pro grams. Understanding of the basic device physics and some familiarity with device modeling is assumed. Derivation of the model equations is not included. ( SPICE is a circuit sim ulation program available from EECS Industrial Support Office, 461 Cory Hall, University of Cali fornia, Berkeley, CA 94720. ) Acknowledgements I wish to express my gratitude to Valid Logic Systems, Inc.

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1995 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.

Book University of Michigan Official Publication

Download or read book University of Michigan Official Publication written by University of Michigan and published by UM Libraries. This book was released on 1989 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: Each number is the catalogue of a specific school or college of the University.

Book Nonlinear Circuit Simulation and Modeling

Download or read book Nonlinear Circuit Simulation and Modeling written by José Carlos Pedro and published by Cambridge University Press. This book was released on 2018-06-14 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover the nonlinear methods and tools needed to design real-world microwave circuits with this tutorial guide. Balancing theoretical background with practical tools and applications, it covers everything from the basic properties of nonlinear systems such as gain compression, intermodulation and harmonic distortion, to nonlinear circuit analysis and simulation algorithms, and state-of-the-art equivalent circuit and behavioral modeling techniques. Model formulations discussed in detail include time-domain transistor compact models and frequency-domain linear and nonlinear scattering models. Learn how to apply these tools to designing real circuits with the help of a power amplifier design example, which covers all stages from active device model extraction and the selection of bias and terminations, through to performance verification. Realistic examples, illustrative insights and clearly conveyed mathematical formalism make this an essential learning aid for both professionals working in microwave and RF engineering and graduate students looking for a hands-on guide to microwave circuit design.

Book Nonlinear Microwave Circuit Design

Download or read book Nonlinear Microwave Circuit Design written by Franco Giannini and published by John Wiley & Sons. This book was released on 2004-10-22 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design techniques for nonlinear microwave circuits are much less developed than for linear microwave circuits. Until now there has been no up-to-date text available in this area. Current titles in this field are considered outdated and tend to focus on analysis, failing to adequately address design and measurement aspects. Giannini and Leuzzi provide the theoretical background to non-linear microwave circuits before going on to discuss the practical design and measurement of non-linear circuits and components. Non-linear Microwave Circuit Design reviews all of the established analysis and characterisation techniques available and provides detailed coverage of key modelling methods. Practical examples are used throughout the text to emphasise the design and application focus of the book. Provides a unique, design-focused, coverage of non-linear microwave circuits Covers the fundamental properties of nonlinear circuits and methods for device modelling Outlines non-linear measurement techniques and characterisation of active devices Reviews available design methodologies for non-linear power amplifiers and details advanced software modelling tools Provides the first detailed treatment of non-linear frequency multipliers, mixers and oscillators Focuses on the application potential of non-linear components Practicing engineers and circuit designers working in microwave and communications engineering and designing new applications, as well as senior undergraduates, graduate students and researchers in microwave and communications engineering and their libraries will find this a highly rewarding read.

Book Comprehensive Nonlinear Modelling of Dispersive Heterostructure Field Effect Transistors and Their MMIC Applications

Download or read book Comprehensive Nonlinear Modelling of Dispersive Heterostructure Field Effect Transistors and Their MMIC Applications written by Ingmar Kallfass and published by . This book was released on 2006 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Effects of non linearities of field effect transistors in microwave amplifiers

Download or read book Effects of non linearities of field effect transistors in microwave amplifiers written by and published by . This book was released on 1902 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Este trabalho trata dos efeitos das não-linearidades de transistores de efeito de campo utilizados em amplificadores de microondas. Para tanto, o transistor é modelado por um circuito não-linear equivalente, cujos elementos são determinados através da medição dos parâmetros espalhamento do mesmo, na faixa de 3 GHz a 9 GHz, e com o auxílio de um programa de otimização de circuitos e outro de ajuste de curvas. O método de análise utilizado é o da expansão em série de Volterra, para o qual foi desenvolvido um programa computacional que permite a determinação dos ganhos de transdução e das potências de saída na freqüência fundamental e no terceiro produto de intermodulação, bem como do ponto de 1dB de compressão de ganho, da taxa de distorção de intermodulação de terceira ordem. Esse programa permite, ainda, a verificação da influência das impedâncias de fechamento fora da faixa, nas características de distorção de intermodulação. Através dessa análise pôde-se verificar que as terminações fora da faixa exercem pouca ou nenhuma influência nas características de distorção de intermodulação, com exceção das terminações na freqüência diferença, (freqüência de diferença = freqüência 2 freqüência 1), onde pôde-se constatar uma redução de até 8dB no nível do terceiro produto de intermodulação, para uma escolha apropriada das impedâncias de fechamento nessa freqüência. Esses resultados, contudo, não podem ser considerados definitivos, uma vez que o modelo adotado não levou em consideração o fato do FET utilizado ser pré-adaptado. Também, devido ao transistor ter-se danificado durante as medições de intermodulação, tais resultados não puderam ser comprovados experimentalmente.

Book Compehensive Nonlinear Modelling of Dispersive Heterstructure Field Effect Transistors and their MMIC Applications

Download or read book Compehensive Nonlinear Modelling of Dispersive Heterstructure Field Effect Transistors and their MMIC Applications written by Ingmar Kallfass and published by Cuvillier Verlag. This book was released on 2006-06-28 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: A custom HFET model was developed and applied in the design of several MMIC applica- tions. The model is expressly dedicated to microwave circuit design. Its analytical nonlinear equations provide a compromise between physical interpretability, numerical efficiency and global validity. As an essential part of the overall model, the COBRA expression features a highly efficient and accurate description of complex HFET drain current characteristics. A modification was introduced to include the reduction of drain current due to the self-heating effect as well as for improved description of gain compression. A new approach to frequency dispersion modelling extends the model’s validity range from the microwave- down to the low-frequency and DC regimes. The proposed dispersion model relies on conventional device characterisation techniques and standard parameter ex- traction procedures. The inclusion of multiple dispersion time constants and exponentially decaying step responses accurately reflects the physical nature of individual dispersion ef- fects, providing a correct description of transitions between dispersion regimes both in the time- and frequency domain. As a consequence, the model allows for accurate assessment of dynamic (gain, matching, intermodulation etc.), static (e.g. biasing, power consumption) as well as combined (e.g. PAE, self-biasing) figures of merit during the design phase. Addition- ally, the simulation error introduced by neglecting frequency dispersion when using purely static or dynamic drain current models, can be evaluated. A unified capacitance model approach defines the frame for sets of charge-conservative expressions for gate capacitance characteristics. The final equations employed here resemble in composition the Curtice IV model, e.g. in terms of transition from linear- to saturated- and from sub-threshold- to active voltage regimes. The universal validity of the model was demonstrated by applying it to several different HEMT technologies, encompassing both state-of-the-art GaAs pHEMT low-noise and power processes, high-frequency InP pHEMTs as well as novel concepts such as the strained-Si/SiGe mHEMT. Both the nonlinear capacitance and dispersion models proved to apply very well to all HEMT technologies.

Book Advances in Time Domain Computational Electromagnetic Methods

Download or read book Advances in Time Domain Computational Electromagnetic Methods written by Qiang Ren and published by John Wiley & Sons. This book was released on 2022-11-15 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover state-of-the-art time domain electromagnetic modeling and simulation algorithms Advances in Time-Domain Computational Electromagnetic Methods delivers a thorough exploration of recent developments in time domain computational methods for solving complex electromagnetic problems. The book discuses the main time domain computational electromagnetics techniques, including finite-difference time domain (FDTD), finite-element time domain (FETD), discontinuous Galerkin time domain (DGTD), time domain integral equation (TDIE), and other methods in electromagnetic, multiphysics modeling and simulation, and antenna designs. The book bridges the gap between academic research and real engineering applications by comprehensively surveying the full picture of current state-of-the-art time domain electromagnetic simulation techniques. Among other topics, it offers readers discussions of automatic load balancing schemes for DG DG-FETD/SETD methods and convolution quadrature time domain integral equation methods for electromagnetic scattering. Advances in Time-Domain Computational Electromagnetic Methods also includes: Introductions to cylindrical, spherical, and symplectic FDTD, as well as FDTD for metasurfaces with GSTC and FDTD for nonlinear metasurfaces Explorations of FETD for dispersive and nonlinear media and SETD-DDM for periodic/quasi-periodic arrays Discussions of TDIE, including explicit marching-on-in-time solvers for second-kind time domain integral equations, TD-SIE DDM, and convolution quadrature time domain integral equation methods for electromagnetic scattering Treatments of deep learning, including time domain electromagnetic forward and inverse modeling using a differentiable programming platform Ideal for undergraduate and graduate students studying the design and development of various kinds of communication systems, as well as professionals working in these fields, Advances in Time-Domain Computational Electromagnetic Methods is also an invaluable resource for those taking advanced graduate courses in computational electromagnetic methods and simulation techniques.