EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Non invasive Velocity and Volume Fraction Profile Measurement in Multiphase Flows

Download or read book Non invasive Velocity and Volume Fraction Profile Measurement in Multiphase Flows written by Sulaiyam Al-Hinai and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiphase flow is the simultaneous flow of two or more phases, in direct contact, and is important in the oil industry, e.g. in production wells, in sub-sea pipelines and during the drilling of wells. The behaviour of the flow will depend on the properties of the constituent phases, the flow velocities and volume fractions of the phases and the geometry of the system. In solids-in-liquid flows, measurement of the local solids volume fraction distribution and the local axial solids velocity distribution in the flow cross section is important for many reasons including health and safety and economic reasons, particularly in oil well drilling operations. However upward inclined solidsliquid flows which are frequently encountered during oil well drilling operations are not well understood. Inclined solids-liquid flows result in non- uniform profiles of the solids volume fraction and axial solids velocity in the flow cross- section. In order to measure the solids volumetric flow rate in these situations it is necessary to measure the distributions of the local solids volume fraction and the local axial solids velocity and then to integrate the product of these local properties in the flow cross section. This thesis describes the development of a non-intrusive Impedance Cross-Correlation (ICC) device to measure the local solids volume fraction distribution and the local solids axial solids velocity distribution in upward inclined solids-water flows in which these distributions are highly non-uniform. The ICC device comprises a non-conductive pipe section of 80mm internal diameter fitted with two arrays of electrodes, denoted?array A? and?array B?, separated by an axial distance of 50mm. At each array, eight electrodes are equispaced over the internal circumference of the pipe. A control system consisting of a microcontroller and analogue switches is used such that, for arrays A and B, any of the eight electrodes can be configured as an "excitation electrode" (V+), a "virtual earth measurement electrode" (Ve) or an "earth electrode" (E) thus enabling the local mixture conductance in different regions of the flow cross-section to be measured and thereby allowing the local solids volume fraction in each region to be deduced. The conductance signals from arrays A and B are also cross-correlated to yield the local solids axial velocity in the regions of flow under interrogation. A number of experiments were carried out in solids-in-water flows in a flow loop with an 80 mm inner diameter, 1.68m long Perspex test section which was inclined at three different inclination angle to the vertical (o 0, o 15 and o 30). The obtained results show good quantitative agreement with previous work carried out using intrusive local probes. Integration of the flow profiles in the cross section also yielded excellent quantitative agreement with reference measurements of the mean solids volume fraction, the mean solids velocity and the solids volumetric flow rate. Furthermore, this study also showed good qualitative agreement with high speed film of the flow. It is believed that the method of velocity and volume fraction profile measurement described in this thesis is much simpler to implement, more accurate and less expensive than the currently very popular technique of dual-plane Electrical Resistance Tomography (ERT). Finally, the thesis describes a mathematical model for predicting the axial velocity distribution of inclined solids-water flows using the solids volume fraction profiles measured by the ICC device. Good agreement was obtained between the predicted velocity profiles and the velocity profiles measured using the ICC device.

Book Measurement of the Local Properties of Multiphase Flows

Download or read book Measurement of the Local Properties of Multiphase Flows written by Nickolaos Panagiotopoulos and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Flows of mixed fluids in pipes are frequently encountered in several areas of engineering, such as chemical, petroleum and nuclear. Two key parameters characterising such flows are the local volume fraction distribution and the axial velocity distribution of the dispersed phase. In order to achieve a further understanding of the flow properties, vector velocities are important too. A common intrusive method that is used for acquiring these parameters is the local conductivity probe. The reason is that conductivity probes are more accurate than other measuring techniques, such as ERT (Electrical Resistance Tomography) systems, and are therefore used for the calibration and validation of ERT systems. Also the measurements from conductivity probes show a more representative distribution of volume fraction and velocity of the dispersed phase than other non intrusive methods. They are also useful for validating data produced by CFD (Computed Fluid Dynamics) simulations. In this thesis, research has been done on designing probes, and improving the related signal processing algorithms, and several experiments have been run in multiphase loops for measuring the local volume fraction and velocity of the dispersed phase in vertical and inclined pipes and in swirling flows. All these attempts have recognised an extra problem that is not negligible when using local conductance probes. This problem is the interaction between the probe and the bubble. It is known that local probes alter the true value of the bubble?s vector velocity due to the fact that bubbles are slowed down by the probe. A number of experiments were performed and a comparison between ERT and local conductivity probes was made. Both techniques gave velocity distributions of the dispersed phase which do not agree, showing that ERT is unable to accurately measure the gas velocity and volume fraction profiles. Furthermore the current thesis presents results from dual sensor and four sensor local conductivity probes in steady vertical and inclined air-water and oil-water flows and in steady swirling flows, and a proposed new design for fabricating a rotary index dual sensor probe with a new algorithm for the signal processing scheme is given. This new type of conductivity probe has a relatively small frontal area that reduces the bubble-probe interaction hence the probe?s effect on the dispersed phase is less that of other types of probe.

Book Non Invasive Monitoring of Multiphase Flows

Download or read book Non Invasive Monitoring of Multiphase Flows written by J. Chaouki and published by Elsevier. This book was released on 1997-01-15 with total page 613 pages. Available in PDF, EPUB and Kindle. Book excerpt: Non-Invasive Monitoring of Multiphase Flows is a result of the latest advances realized in non-invasive measurement of multiphase systems by means of various tomographic and velocimetric techniques. Written by experts on special topics within the realm of this subject, the book reviews in 15 chapters the theoretical background and the physics of the measurement process for each of a number of techniques. In addition, the mathematical modeling related to the measured property, such as in the image reconstitution problem for tomography, successful application of the techniques for measurement in various multiphase systems and their advantages and limitations are described. Features of this book: - Comprehensive and Complete. Covers both theoretical and application viewpoints of noninvasive measuring techniques in multiphase systems. There is no book available on this subject in the field of multiphase flows - Versatile. Material is presented in such a way that the book can be used either for research or for teaching graduate students specializing in the topic of multiphase flows - Awareness and Uniformity. The engineering community is made aware of advantages of these new techniques and they are presented in a uniform package. The editors strive to provide a comprehensive compendium of all the relevant information essential for practising engineers, consultants, university professors, graduate students and technicians who are involved in the study of multiphase flow phenomena. The book, although directed to the study of multiphase systems of interest to the chemical engineer, also provides valuable information for all other engineering disciplines that deal with multiphase systems.

Book Multiphase Flow

    Book Details:
  • Author : S. Hernández
  • Publisher : WIT Press
  • Release : 2020-06-03
  • ISBN : 1784664170
  • Pages : 136 pages

Download or read book Multiphase Flow written by S. Hernández and published by WIT Press. This book was released on 2020-06-03 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: The research included in this volume focuses on using synergies between experimental and computational techniques to gain a better understanding of all classes of multiphase and complex flow. The included papers illustrate the close interaction between numerical modellers and researchers working to gradually resolve the many outstanding issues in our understanding of multiphase flow. Recently multiphase fluid dynamics have generated a great deal of attention, leading to many notable advances in experimental, analytical and numerical studies. Progress in numerical methods has permitted the solution of many practical problems, helping to improve our understanding of the physics involved. Multiphase flows are found in all areas of technology and the range of related problems of interest is vast, including astrophysics, biology, geophysics, atmospheric process, and many areas of engineering.

Book Multiphase Flows with Droplets and Particles

Download or read book Multiphase Flows with Droplets and Particles written by Clayton T. Crowe and published by CRC Press. This book was released on 2011-08-26 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the publication of the first edition of Multiphase Flow with Droplets and Particles, there have been significant advances in science and engineering applications of multiphase fluid flow. Maintaining the pedagogical approach that made the first edition so popular, this second edition provides a background in this important area of fluid mecha

Book Computational Methods in Multiphase Flow V

Download or read book Computational Methods in Multiphase Flow V written by Andrea Alberto Mammoli and published by WIT Press. This book was released on 2009 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: Together with turbulence, multiphase flow remains one of the most challenging areas of computational mechanics and experimental methods and numerous problems remain unsolved to date. Multiphase flows are found in all areas of technology, at all length scales and flow regimes. The fluids involved can be compressible or incompressible, linear or nonlinear. Because of the complexity of the problems, it is often essential to utilize advanced computational and experimental methods to solve the complex equations that describe them. Challenges in these simulations include modelling and tracking interfaces, dealing with multiple length scales, modelling nonlinear fluids, treating drop breakup and coalescence, characterizing phase structures, and many others. Experimental techniques, although expensive and difficult to perform, are essential to validate models. This book contains papers presented at the Fifth International Conference on Computational Methods in Multiphase Flow, which are grouped into the following topics: Multiphase Flow Simulation; Interaction of Gas, Liquids and Solids; Turbulent Flow; Environmental Multiphase Flow; Bubble and Drop Dynamics; Flow in Porous Media; Heat Transfer; Image Processing; Interfacial Behaviour.

Book Flow Measurement for Engineers and Scientists

Download or read book Flow Measurement for Engineers and Scientists written by Nicholas P. Cheremisinoff and published by CRC Press. This book was released on 1987-12-18 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses instrumentation and experimental methods for obtaining detailed information on the structure of various types of flows as well as standard process flow instrumentation suitable for industrial control applications. It assists research-oriented and process engineering personnel.

Book Multiphase Flow Handbook

Download or read book Multiphase Flow Handbook written by Clayton T. Crowe and published by CRC Press. This book was released on 2005-09-19 with total page 1146 pages. Available in PDF, EPUB and Kindle. Book excerpt: Because of the importance of multiphase flows in a wide variety of industries, including power, petroleum, and numerous processing industries, an understanding of the behavior and underlying theoretical concepts of these systems is critical. Contributed by a team of prominent experts led by a specialist with more than thirty years of experience, the Multiphase Flow Handbook provides such an understanding, and much more. It covers all aspects of multiphase flows, from fundamentals to numerical methods and instrumentation. The book begins with an introduction to the fundamentals of particle/fluid/bubble interactions followed by gas/liquid flows and methods for calculating system parameters. It includes up-to-date information on practical industrial applications such as boiling and condensation, fluidized beds, aerosols, separation systems, pollution control, granular and porous media flow, pneumatic and slurry transport, and sprays. Coverage then turns to the most recent information on particle/droplet-fluid interactions, with a chapter devoted to microgravity and microscale flows and another on basic multiphase interactions. Rounding out the presentation, the authors discuss numerical methods, state-of-the art instrumentation, and advanced experimental techniques. Supplying up-to-date, authoritative information on all aspects of multiphase flows along with numerous problems and examples, the Multiphase Flow Handbook is the most complete reference available for understanding the flow of multiphase mixtures.

Book Multiphase Flow Metering

Download or read book Multiphase Flow Metering written by Gioia Falcone and published by Elsevier. This book was released on 2009-11-16 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last two decades the development, evaluation and use of MFM systems has been a major focus for the Oil & Gas industry worldwide. Since the early 1990's, when the first commercial meters started to appear, there have been around 2,000 field applications of MFM for field allocation, production optimisation and well testing. So far, many alternative metering systems have been developed, but none of them can be referred to as generally applicable or universally accurate. Both established and novel technologies suitable to measure the flow rates of gas, oil and water in a three-phase flow are reviewed and assessed within this book. Those technologies already implemented in the various commercial meters are evaluated in terms of operational and economical advantages or shortcomings from an operator point of view. The lessons learned about the practical reliability, accuracy and use of the available technology is discussed. The book suggests where the research to develop the next generation of MFM devices will be focused in order to meet the as yet unsolved problems. The book provides a critical and independent review of the current status and future trends of MFM, supported by the authors' strong background on multiphase flow and by practical examples. These are based on the authors' direct experience on MFM, gained over many years of research in connection with both operators and service companies. As there are currently no books on the subject of Multiphase Flow Metering for the Oil & Gas industry, this book will fill in the gap and provide a theoretical and practical reference for professionals, academics, and students.* Written by leading scholars and industry experts of international standing* Includes strong coverage of the theoretical background, yet also provides practical examples and current developments* Provides practical reference for professionals, students and academics

Book Phase Flow Rate Measurements of Annular Flows

Download or read book Phase Flow Rate Measurements of Annular Flows written by Qahtan Al-Yarubi and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In the international oil and gas industry multiphase annular flow in pipelines and wells is extremely important, but not well understood. This thesis reports the development of an efficient and cheap method for measuring the phase flow rates in two phase annular and annular mist flow, in which the liquid phase is electrically conducting, using ultrasonic and conductance techniques. The method measures changes in the conductance of the liquid film formed during annular flow and uses these to calculate the volumetric and mass flow rates of the liquid film. The gas velocity in the core of the annular flow is measured using an ultrasonic technique. Combined with an entrainment model and the liquid film measurements described above, the ultrasonic technique enables the volumetric flow rate of the gas in the core and the volumetric and mass flow rates of entrained liquid droplets to be measured. This study was based on experimental work and the use of modelling techniques. The practical investigation comprised a series of experiments conducted on a purpose built flow loop in which the test section was a Perspex pipe of 50mm ID. The experimental work was limited to two-phase air-water flow. The flow loop was specifically designed to accommodate the different instruments and subsystems designed in this investigation including bespoke flow meters and a film extraction system. Most flow loop controls were automated using a MATLAB program. Reference measurement of the total water flow rate was made using a calibrated turbine flow meter and of the air flow rate using a calibrated rotameter. For the combined ultrasonic/conductance method investigated in this thesis, the velocity of the gas in the core was found using a novel Ultrasonic Flow Meter (USFM). The positioning and arrangement of the transducers have never been used previously. The flow velocity of the liquid film and the thickness of the film were measured using a novel Conductance Flow Meter (CFM). The CFM measured the liquid film thickness using novel wall conductance probes. By cross correlating the signals from a pair of such probes the film velocity was obtained. Good agreement of the experimental results obtained from the CFM and USFM with results published in the literature was found. Although not investigated experimentally in the work described in this thesis, annular flows encountered in the oil industry may contain a liquid phase comprising a mixture of oil and water. For such flows, the volume fractions of the oil and water can be measured using an automated bypass system developed during this project. The bypass system periodically extracts part of the liquid film, measures its density and then releases the sample back into the pipeline. The liquid phase volume fractions are determined from this density measurement which can be performed more than once per minute. An entrainment model was developed, which is required by the ultrasonic/conductance flow metering technique described in this thesis, in which the mass fraction of the liquid flowing as entrained droplets in the core can be determined from the liquid film thickness and velocity measurements. A mathematical model was also developed to describe the properties of the liquid film, such as liquid velocity profile within the film, and the model?s results were found to agree with the experimental results obtained during the project and also with previous work cited in the literature. The complexity of this latter model was reduced by making a number of simplifying assumptions, which are presented and discussed in the thesis, including the assumption that in annular flow there is a dynamic balance liquid entrainment and droplets being deposited back onto the film. The combination of the designed CFM and USFM with the bypass tube and the entrainment model offer the opportunity for a?wet gas? flow meter to be developed to measure two and three phase annular flows at relatively low cost and with enhanced accuracy. Such a device would have the advantage that it would by substantially smaller than systems using separators and it could even be retrofitted onto off-shore platforms. The integration of the subsystems developed in this project into a single system capable of giving on-line measurements of annular flow would be a major benefit to the author?s sponsor, Petroleum Development of Oman.

Book Multiphase Flows with Droplets and Particles  Third Edition

Download or read book Multiphase Flows with Droplets and Particles Third Edition written by Efstathios E. Michaelides and published by CRC Press. This book was released on 2022-12-30 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiphase Flows with Droplets and Particles provides an organized, pedagogical study of multiphase flows with particles and droplets. This revised edition presents new information on particle interactions, particle collisions, thermophoresis and Brownian movement, computational techniques and codes, and the treatment of irregularly shaped particles. An entire chapter is devoted to the flow of nanoparticles and applications of nanofluids. Features Discusses the modelling and analysis of nanoparticles. Covers all fundamental aspects of particle and droplet flows. Includes heat and mass transfer processes. Features new and updated sections throughout the text. Includes chapter exercises and a Solutions Manual for adopting instructors. Designed to complement a graduate course in multiphase flows, the book can also serve as a supplement in short courses for engineers or as a stand-alone reference for engineers and scientists who work in this area.

Book Computational Methods in Multiphase Flow

Download or read book Computational Methods in Multiphase Flow written by H. Power and published by Computational Mechanics. This book was released on 2001 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: New advanced numerical methods and computer architectures have greatly improved our ability to solve complex multiphase flow problems.

Book Two Phase Flow

    Book Details:
  • Author : Cl Kleinstreuer
  • Publisher : Routledge
  • Release : 2017-11-01
  • ISBN : 1351406485
  • Pages : 472 pages

Download or read book Two Phase Flow written by Cl Kleinstreuer and published by Routledge. This book was released on 2017-11-01 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate text provides a unified treatment of the fundamental principles of two-phase flow and shows how to apply the principles to a variety of homogeneous mixture as well as separated liquid-liquid, gas-solid, liquid-solid, and gas-liquid flow problems, which may be steady or transient, laminar or turbulent.Each chapter contains several sample problems, which illustrate the outlined theory and provide approaches to find simplified analytic descriptions of complex two-phase flow phenomena.This well-balanced introductory text will be suitable for advanced seniors and graduate students in mechanical, chemical, biomedical, nuclear, environmental and aerospace engineering, as well as in applied mathematics and the physical sciences. It will be a valuable reference for practicing engineers and scientists. A solutions manual is available to qualified instructors.

Book Plant Flow Measurement and Control Handbook

Download or read book Plant Flow Measurement and Control Handbook written by Swapan Basu and published by Academic Press. This book was released on 2018-08-22 with total page 1290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Plant Flow Measurement and Control Handbook is a comprehensive reference source for practicing engineers in the field of instrumentation and controls. It covers many practical topics, such as installation, maintenance and potential issues, giving an overview of available techniques, along with recommendations for application. In addition, it covers available flow sensors, such as automation and control. The author brings his 35 years of experience in working in instrumentation and control within the industry to this title with a focus on fluid flow measurement, its importance in plant design and the appropriate control of processes. The book provides a good balance between practical issues and theory and is fully supported with industry case studies and a high level of illustrations to assist learning. It is unique in its coverage of multiphase flow, solid flow, process connection to the plant, flow computation and control. Readers will not only further understand design, but they will also further comprehend integration tactics that can be applied to the plant through a step-by-step design process that goes from installation to operation. - Provides specification sheets, engineering drawings, calibration procedures and installation practices for each type of measurement - Presents the correct flow meter that is suitable for a particular application - Includes a selection table and step-by-step guide to help users make the best decision - Cover examples and applications from engineering practice that will aid in understanding and application

Book Multiphase Flow Rate MeasurementUsing a Novel Conductance Venturi Meter

Download or read book Multiphase Flow Rate MeasurementUsing a Novel Conductance Venturi Meter written by ʻAbbās Ḥasan and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiphase flows, where two or even three fluids flow simultaneously in a pipe are becoming increasingly important in industry. Although much research has been done to measure the phase flow rates of two-phase flows using a Venturi meter, accurate flow rate measurements of two phase flows in vertical and horizontal pipes at different flow regimes using a Venturi meter remain elusive. In water continuous multiphase flow, the electrical conductance technique has proven attractive for many industrial applications. In gas-water two phase flows, the electrical conductance technique can be used to measure the gas volume fraction. The electrical conductance is typically measured by passing a known electrical current through the flow and then measure the voltage drop between two electrodes in the pipe. Once the current and the voltage drop are obtained, the conductance (or resistance) of the mixture, which depends on the gas volume fraction in the water, can then be calculated. The principal aim of the research described in this thesis was to develop a novel conductance multiphase flow meter which is capable of measuring the gas and the water flow rates in vertical annular flows and horizontal stratified gas water two phase flows. This thesis investigates the homogenous and separated (vertical annular and horizontal stratified) gas-water two phase flows through Venturi meters. In bubbly(approximately homogenous) two phase flow, the universal Venturi meter (nonconductance Venturi) was used in conjunction with the Flow Density Meter, FDM (which is capable of measuring the gas volume fraction at the inlet of the Venturi) to measure the mixture flow rate using the homogenous flow model. Since the separated flow in a Venturi meter is highly complex and the application of the homogenous flow model could not be expected to lead to highly accurate results, a novel conductance multiphase flow meter, which consists of the Conductance Inlet Void Fraction Meter, CIVFM (that is capable of measuring the gas volume fraction at the inlet of the Venturi) and the Conductance Multiphase Venturi Meter, CMVM (that is capable of measuring the gas volume fraction at the throat of the Venturi) was designed and manufactured allowing the new separated flow model to be used to determine the gas and the water flow rates. A new model for separated flows has been investigated. This model was used to calculate the phase flow rates of water and gas flows in a horizontal stratified flow. This model was also modified to be used in a vertical annular flow. The new separated flow model is based on the measurement of the gas volume fraction at the inlet and the throat of the Venturi meter rather than relying on prior knowledge of the mass flow quality x. Online measurement of x is difficult and not practical in nearly all multiphase flow applications. The advantage of the new model described in this thesis over the previous models available in the literature is that the new model does not require prior knowledge of the mass flow quality which makes the measurement technique described in this thesis more practical.

Book Flow Measurement

    Book Details:
  • Author : Gustavo Urquiza
  • Publisher : BoD – Books on Demand
  • Release : 2012-03-28
  • ISBN : 9535103903
  • Pages : 197 pages

Download or read book Flow Measurement written by Gustavo Urquiza and published by BoD – Books on Demand. This book was released on 2012-03-28 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Flow Measurement book comprises different topics. The book is divided in four sections. The first section deals with the basic theories and application in microflows, including all the difficulties that such phenomenon implies. The second section includes topics related to the measurement of biphasic flows, such as separation of different phases to perform its individual measurement and other experimental methods. The third section deals with the development of various experiments and devices for gas flow, principally air and combustible gases. The last section presents 2 chapters on the theory and methods to perform flow measurements indirectly by means on pressure changes, applied on large and small flows.