EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Non equilibrium Dynamics of Ultracold Atoms in Optical Lattices

Download or read book Non equilibrium Dynamics of Ultracold Atoms in Optical Lattices written by Jens Philipp Ronzheimer and published by . This book was released on 2014 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Non equilibrium Dynamics of Ultracold Atoms in Optical Lattices

Download or read book Non equilibrium Dynamics of Ultracold Atoms in Optical Lattices written by and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fluctuations and Non Equilibrium Phenomena in Strongly Correlated Ultracold Atoms

Download or read book Fluctuations and Non Equilibrium Phenomena in Strongly Correlated Ultracold Atoms written by Kazuma Nagao and published by Springer Nature. This book was released on 2020-08-25 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses non-equilibrium quantum many-body dynamics, recently explored in an analog quantum simulator of strongly correlated ultracold atoms. The first part presents a field-theoretical analysis of the experimental observability of the Higgs amplitude mode that emerges as a relativistic collective excitation near a quantum phase transition of superfluid Bose gases in an optical lattice potential. The author presents the dynamical susceptibilities to external driving of the microscopic parameters, taking into account a leading-order perturbative correction from quantum and thermal fluctuations and shows clear signatures of the Higgs mode in these observables. This is the first result that strongly supports the stability of the Higgs mode in three-dimensional optical lattices even in the presence of a spatially inhomogeneous confinement potential and paves the way for desktop observations of the Higgs mode. In the second part, the author applies the semi-classical truncated-Wigner approximation (TWA) to far-from-equilibrium quantum dynamics. Specifically, he considers the recent experiments on quantum-quench dynamics in a Bose-Hubbard quantum simulator. A direct comparison shows remarkable agreement between the numerical results from TWA and the experimental data. This result clearly indicates the potential of such a semi-classical approach in reliably simulating many-body systems using classical computers. The book also includes several chapters providing comprehensive reviews of the recent studies on cold-atomic quantum simulation and various theoretical methods, including the Schwinger-boson approach in strongly correlated systems and the phase-space semi-classical method for far-from-equilibrium quantum dynamics. These chapters are highly recommended to students and young researchers who are interested in semi-classical approaches in non-equilibrium quantum dynamics.

Book Interacting Ultracold Gases in Optical Lattices

Download or read book Interacting Ultracold Gases in Optical Lattices written by Julia Wernsdorfer and published by . This book was released on 2012 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Quantum Gases  Finite Temperature And Non equilibrium Dynamics

Download or read book Quantum Gases Finite Temperature And Non equilibrium Dynamics written by Nick P Proukakis and published by World Scientific. This book was released on 2013-02-21 with total page 579 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 1995 observation of Bose-Einstein condensation in dilute atomic vapours spawned the field of ultracold, degenerate quantum gases. Unprecedented developments in experimental design and precision control have led to quantum gases becoming the preferred playground for designer quantum many-body systems.This self-contained volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics. Thematically organised chapters on different methodologies, contributed by key researchers using a unified notation, provide the first integrated view of the relative merits of individual approaches, aided by pertinent introductory chapters and the guidance of editorial notes.Both graduate students and established researchers wishing to understand the state of the art will greatly benefit from this comprehensive and up-to-date review of non-equilibrium and finite temperature techniques in the exciting and expanding field of quantum gases and liquids./a

Book Ultracold Atoms in Optical Lattices

Download or read book Ultracold Atoms in Optical Lattices written by Maciej Lewenstein and published by Oxford University Press. This book was released on 2012-03-08 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the physics of atoms frozen to ultralow temperatures and trapped in periodic light structures. It introduces the reader to the spectacular progress achieved on the field of ultracold gases and describes present and future challenges in condensed matter physics, high energy physics, and quantum computation.

Book Equilibrium and Non equilibrium Properties of Strongly Interacting Bosons in Optical Lattices

Download or read book Equilibrium and Non equilibrium Properties of Strongly Interacting Bosons in Optical Lattices written by Wei Xu and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation serves as a summary of my Ph.D. work numerically studying equilibrium and non-equilibrium properties of strongly-interacting one-dimensional (1D) boson systems. This work is motivated by the fact that 1D systems are realizable and highly controllable with ultracold atoms in optical lattice and atom chip experiments. We apply a recent worm algorithmic Monte Carlo approach developed for 1D continuous systems to study their equilibrium properties, both with and without an underlying lattice. We also apply an exact lattice approach based on the Bose-Fermi mapping to check our Monte Carlo results in the Tonks-Girardeau limit, and more importantly, to study far-from-equilibrium expansion dynamics of the systems.We first study the scaling of one-particle correlations of the harmonically trapped Lieb-Liniger gas with changing temperature and interaction strength. Based on the universal behaviors of the density and momentum profiles, we are able to determine the effective parameters needed to fully characterize the system. We also find that the Tonks-Girardeau limit at low temperatures is the ideal regime for the experimental observation of the $1/k^4$ momentum tail. An extra periodic lattice can drive the transition from superfluid to Mott insulator states. Exact and complete phase diagrams for such transitions are available only in the weak interacting and deep lattice limit, in which the system can be described using one-band Bose-Hubbard model. Beyond this limit, we use the worm algorithm in continuous space to map out the phase diagrams at various interaction strengths. We compare our phase diagrams with one-band Bose-Hubbard predictions and identify the regime where the one-band description breaks down. We introduce an inverse confined scattering solution to obtain effective Hubbard parameters, with which the Bose-Hubbard model provides correct results for strong interactions and deep lattices at unit filling.In addition to the equilibrium properties, we also study the expansion dynamics of ultracold atoms in the hard-core limit. Experimentally, this is usually achieved by turning off confining potentials and letting atoms expand in optical lattices. Theoretical studies from initial ground states predicted the occurrence of fermionization of the momentum distribution after long expansion times. In addition, quasicondensation at finite momenta emerges when expanding from Mott insulating domains. Here, we develop a finite-temperature extension of the lattice approach for dynamics. We find the dynamical ferminoization of the momentum distributions at all temperatures. For expansion from initial Mott domains, we observe enhanced correlations reminiscent of dynamical quasicondensation. Surprisingly, we find the systems appear to cool down during the melting of the Mott domains. We use an emergent local Hamiltonian to understand these emergent phenomena.

Book Probing Non Equilibrium Dynamics in Two Dimensional Quantum Gases

Download or read book Probing Non Equilibrium Dynamics in Two Dimensional Quantum Gases written by Cheng-An Chen and published by Springer Nature. This book was released on 2022-10-11 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis explores the physics of non-equilibrium quantum dynamics in homogeneous two-dimensional (2D) quantum gases. Ultracold quantum gases driven out of equilibrium have been prominent platforms for studying quantum many-body physics. However, probing non-equilibrium dynamics in conventionally trapped, inhomogeneous atomic quantum gases has been a challenging task because coexisting mass transport and spreading of quantum correlations often complicate experimental analyses. In this work, the author solves this technical hurdle by producing ultracold cesium atoms in a quasi-2D optical box potential. The exquisite optical trap allows one to remove density inhomogeneity in a degenerate quantum gas and control its dimensionality. The author also details the development of a high-resolution, in situ imaging technique to monitor the evolution of collective excitations and quantum transport down to atomic shot-noise, and at the length scale of elementary collective excitations. Meanwhile, tunable Feshbach resonances in ultracold cesium atoms permit precise and dynamical control of interactions with high temporal and even spatial resolutions. By employing these state-of-the-art techniques, the author performed interaction quenches to control the generation and evolution of quasiparticles in quantum gases, presenting the first direct measurement of quantum entanglement between interaction quench generated quasiparticle pairs in an atomic superfluid. Quenching to attractive interactions, this work shows stimulated emission of quasiparticles, leading to amplified density waves and fragmentation, forming 2D matter-wave Townes solitons that were previously considered impossible to form in equilibrium due to their instability. This thesis unveils a set of scale-invariant and universal quench dynamics and provides unprecedented tools to explore quantum entanglement transport in a homogenous quantum gas.

Book Quantum Transport and Phase Diagram of Ultracold Bosonic Atoms in Optical Lattices

Download or read book Quantum Transport and Phase Diagram of Ultracold Bosonic Atoms in Optical Lattices written by Yinyin Qian and published by . This book was released on 2013 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ultracold atoms loaded in optical lattices provide a novel class of many-body systems with widely tunable experimental parameters. In this dissertation I will theoretically study both equilibrium and non-equilibrium properties of bosonic atoms in optical lattices and explore their experimental signature. The topics in this dissertation include the quantum transport of bosonic cold atoms in double-well optical lattices, many-body Landau-Zener dynamics of cold atoms in double-well optical lattices, and phase diagrams for spin-orbital coupled cold atoms in optical lattices in both deep Mott insulator and superfluid regions.

Book Non equilibrium Dynamics of a Bose Einstein Condensate in an Optical Lattice

Download or read book Non equilibrium Dynamics of a Bose Einstein Condensate in an Optical Lattice written by Uttam Man Shrestha and published by . This book was released on 2009 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Non equilibrium Dynamics and Novel Quantum Phases of Multicomponent Ultracold Atoms

Download or read book Non equilibrium Dynamics and Novel Quantum Phases of Multicomponent Ultracold Atoms written by Robert Wen-Chieh Cherng and published by . This book was released on 2010 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Next we turn to pairing in fermionic atoms. For fermionic atoms with two components and attractive local interactions, pairing was first described by Bardeen, Cooper, and Schrieffer. We generalize these results to multicomponent systems realizable with cold atoms. General symmetry arguments allow us to classify possible types of pairing as well as characterize the phase transitions separating them. Finally, we study how magnetic ordering emerges in multicomponent spinor condensates. We begin by analyzing the collective mode spectrum and demonstrate how small fluctuations can develop dynamical instabilities and drive the non-equilibrium dynamics. Such instabilities may arise through externally imposed spiral order in the magnetization or through intrinsic dipolar interactions. We then present an effective low-energy theory for spinor condensates and find analytical solutions in the absence of dipolar interactions. These solutions give insight into the numerical solutions in the presence of dipolar interactions obtained via a systematic symmetry analysis.

Book Non Equilibrium Dynamics Beyond Dephasing

Download or read book Non Equilibrium Dynamics Beyond Dephasing written by Bernhard Rauer and published by Springer. This book was released on 2019-05-04 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cold atomic gases trapped and manipulated on atom chips allow the realization of seminal one-dimensional (1d) quantum many-body problems in an isolated and well controlled environment. In this context, this thesis presents an extensive experimental study of non-equilibrium dynamics in 1d Bose gases, with a focus on processes that go beyond simple dephasing dynamics. It reports on the observation of recurrences of coherence in the post-quench dynamics of a pair of 1d Bose gases and presents a detailed study of their decay. The latter represents the first observation of phonon-phonon scattering in these systems. Furthermore, the thesis investigates a novel cooling mechanism occurring in Bose gases subjected to a uniform loss of particles. Together, the results presented show a wide range of non-equilibrium phenomena occurring in 1d Bose gases and establish them as an ideal testbed for many-body physics beyond equilibrium.

Book Nonequilibrium Dynamics of Collective Excitations in Quantum Materials

Download or read book Nonequilibrium Dynamics of Collective Excitations in Quantum Materials written by Edoardo Baldini and published by Springer. This book was released on 2018-03-28 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies the dynamics of fundamental collective excitations in quantum materials, focusing on the use of state-of-the-art ultrafast broadband optical spectroscopy. Collective behaviour in solids lies at the origin of several cooperative phenomena that can lead to profound transformations, instabilities and phase transitions. Revealing the dynamics of collective excitations is a topic of pivotal importance in contemporary condensed matter physics, as it provides information on the strength and spatial distribution of interactions and correlation. The experimental framework explored in this book relies on setting a material out-of-equilibrium by an ultrashort laser pulse and monitoring the photo-induced changes in its optical properties over a broad spectral region in the visible or deep-ultraviolet. Collective excitations (e.g. plasmons, excitons, phonons...) emerge either in the frequency domain as spectral features across the probed range, or in the time domain as coherent modes triggered by the pump pulse. Mapping the temporal evolution of these collective excitations provides access to the hierarchy of low-energy phenomena occurring in the solid during its path towards thermodynamic equilibrium. This methodology is used to investigate a number of strongly interacting and correlated materials with an increasing degree of internal complexity beyond conventional band theory.

Book Non equilibrium Dynamics of One Dimensional Bose Gases

Download or read book Non equilibrium Dynamics of One Dimensional Bose Gases written by Tim Langen and published by Springer. This book was released on 2015-05-22 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work presents a series of experiments with ultracold one-dimensional Bose gases, which establish said gases as an ideal model system for exploring a wide range of non-equilibrium phenomena. With the help of newly developed tools, like full distributions functions and phase correlation functions, the book reveals the emergence of thermal-like transient states, the light-cone-like emergence of thermal correlations and the observation of generalized thermodynamic ensembles. This points to a natural emergence of classical statistical properties from the microscopic unitary quantum evolution, and lays the groundwork for a universal framework of non-equilibrium physics. The thesis investigates a central question that is highly contested in quantum physics: how and to which extent does an isolated quantum many-body system relax? This question arises in many diverse areas of physics, and many of the open problems appear at vastly different energy, time and length scales, ranging from high-energy physics and cosmology to condensed matter and quantum information. A key challenge in attempting to answer this question is the scarcity of quantum many-body systems that are both well isolated from the environment and accessible for experimental study.

Book Out of Equilibrium Phenomena in Ultra cold Gases

Download or read book Out of Equilibrium Phenomena in Ultra cold Gases written by Stefan Surhash Natu and published by . This book was released on 2013 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of out-of-equilibrium dynamics in ultra-cold gases is a new and exciting field, driven largely by the recent experimental advances in controlling and imaging cold clouds. The experimental and theoretical work thus far has been somewhat exploratory and largely numerical in nature, as the very paradigms for thinking about these systems are not well established. In this thesis I consider several different scenarios of ultra-cold bosonic and fermionic gases driven out of equilibrium and study their properties. In Chapter 1, I provide an overview of the phenomenology of ultra-cold gases, highlighting the timescales governing these systems and how the experimentalist can tune them. I discuss how cold gases can be cooled and trapped and discuss the basic physics behind optical lattices. I also discuss experimental probes of these gases, in particular the new high resolution imaging techniques developed recently at Chicago, Munich and Harvard. In Chapter 2, I discuss an early experiment (circa. 2008) which observed long lived spin dynamics in a thermal spin-1/2 Fermi gas. This experiment is an nice illustration of interesting physics resulting from the separation of timescales between spin and collisional dynamics. In my opinion, it is an excellent example of why cold gases are naturally suited to studying non-equilibrium dynamics. I simulate the experiment numerically using a collisionless Boltzmann equation and explain the observed spin dynamics both qualitatively and quantitively. In Chapter 3, I continue the discussion of spin waves in thermal gases by extending previous works on spin-1/2 gases to spin-1 Bose gases. In contrast to Chapter 2, the bulk of the work in this Chapter is analytic in nature. In particular, I find a spin wave instability in the thermal spin-1 Bose gas, which is the high temperature analog of the polar to ferromagnetic transition in a spin-1 Bose Einstein condensate. In Chapter 3, I turn my attention to bosonic systems and briefly review the the Bogoliubov mean-field theory. I calculate the momentum distribution and density-density correlation function of an interacting Bose gas within the Bogoliubov framework. Then I consider bosons in an optical lattice, and introduce the Bose Hubbard model. I calculate the mean-field phase diagram of the Bose Hubbard model and then consider fluctuations about the mean field, and derive the excitation spectrum of the lattice gas in the superfluid and insulating regimes. In Chapter 4, I ask what we learn by studying the dynamics of correlation functions following a sudden change in the interactions in a superfluid. Using the Bogoliubov theory developed in Chapter 3, I will show how the underlying excitation spectrum influences the long and short time behavior of the correlation functions. By considering a lattice dispersion, I study the analogous problem in a weak optical lattice and discuss how the lattice dispersion leads to additional features in the correlation functions. I will also discuss the timescale governing the revival of the condensate fraction in a quantum depleted gas. In Chapter 5, I derive equations of motion governing the dynamics of one and two body correlation functions in the single-band Bose Hubbard model, applicable to bosons in deep lattices. I then consider a simple quench from a Mott insulating initial state to a weakly interacting final state and produce analytic expressions describing the dynamics of correlations following such a quench. I discuss the timescale for the development of long range order following such a quench. I study the problem of chapter 4 using an equations of motion approach. This approach complements the Bogoliubov approach of Chapter 4. First, I derive exact expressions for a quench to a non-interacting state. I then consider how interactions redistribute quasi-momentum to first order in perturbation theory in different dimensions. In Chapter 6, I calculate the relevant timescales for local and global dynamics in trapped lattice Bose gases, a work done in collaboration with Dr. Kaden R.A Hazzard. Using a time-dependent Gutzwiller mean-field theory, I show that the timescale for local equilibration in these systems is fast in experimental terms. I then show that due to the spatial inhomogeneities inherent to cold gases, achieving global equilibrium can be quite complicated, sometimes taking longer than the lifetime of the experiment, an issue of practical importance to current day experiments. I continue this discussion in Chapter 7 which is a collaborative work with experimentalists David McKay and Prof. Brian DeMarco from the University of Toronto and the University of Illinois, Urbana Champaign. Using experimental and numerical methods, we show that the rapid timescales for local dynamics in interacting systems invalidates a frequently used cold atom technique for mapping out the momentum distribution of atoms in an optical lattice.

Book Strongly Interacting Quantum Systems out of Equilibrium

Download or read book Strongly Interacting Quantum Systems out of Equilibrium written by Thierry Giamarchi and published by Oxford University Press. This book was released on 2016-07-07 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last decade new experimental tools and theoretical concepts are providing new insights into collective nonequilibrium behavior of quantum systems. The exquisite control provided by laser trapping and cooling techniques allows us to observe the behavior of condensed bose and degenerate Fermi gases under nonequilibrium drive or after `quenches' in which a Hamiltonian parameter is suddenly or slowly changed. On the solid state front, high intensity short-time pulses and fast (femtosecond) probes allow solids to be put into highly excited states and probed before relaxation and dissipation occur. Experimental developments are matched by progress in theoretical techniques ranging from exact solutions of strongly interacting nonequilibrium models to new approaches to nonequilibrium numerics. The summer school `Strongly interacting quantum systems out of equilibrium' held at the Les Houches School of Physics as its XCIX session was designed to summarize this progress, lay out the open questions and define directions for future work. This books collects the lecture notes of the main courses given in this summer school.

Book Exactly Solvable Models In Many body Theory

Download or read book Exactly Solvable Models In Many body Theory written by Norman H March and published by World Scientific. This book was released on 2016-05-27 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book reviews several theoretical, mostly exactly solvable, models for selected systems in condensed states of matter, including the solid, liquid, and disordered states, and for systems of few or many bodies, both with boson, fermion, or anyon statistics. Some attention is devoted to models for quantum liquids, including superconductors and superfluids. Open problems in relativistic fields and quantum gravity are also briefly reviewed.The book ranges almost comprehensively, but concisely, across several fields of theoretical physics of matter at various degrees of correlation and at different energy scales, with relevance to molecular, solid-state, and liquid-state physics, as well as to phase transitions, particularly for quantum liquids. Mostly exactly solvable models are presented, with attention also to their numerical approximation and, of course, to their relevance for experiments.