Download or read book Noncommutative Microlocal Analysis written by Michael Eugene Taylor and published by American Mathematical Soc.. This book was released on 1984 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Engineering Applications of Noncommutative Harmonic Analysis written by Gregory S. Chirikjian and published by CRC Press. This book was released on 2000-09-28 with total page 698 pages. Available in PDF, EPUB and Kindle. Book excerpt: The classical Fourier transform is one of the most widely used mathematical tools in engineering. However, few engineers know that extensions of harmonic analysis to functions on groups holds great potential for solving problems in robotics, image analysis, mechanics, and other areas. For those that may be aware of its potential value, there is sti
Download or read book An Introduction to Harmonic Analysis on Semisimple Lie Groups written by V. S. Varadarajan and published by Cambridge University Press. This book was released on 1999-07-22 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in paperback, this graduate-level textbook is an introduction to the representation theory of semi-simple Lie groups. As such, it will be suitable for research students in algebra and analysis, and for research mathematicians requiring a readable account of the topic. The author emphasizes the development of the central themes of the sunject in the context of special examples, without losing sight of its general flow and structure. The book concludes with appendices sketching some basic topics with a comprehensive guide to further reading.
Download or read book Non commutative Analysis written by Palle Jorgensen and published by World Scientific. This book was released on 2017-01-24 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'This is a book to be read and worked with. For a beginning graduate student, this can be a valuable experience which at some points in fact leads up to recent research. For such a reader there is also historical information included and many comments aiming at an overview. It is inspiring and original how old material is combined and mixed with new material. There is always something unexpected included in each chapter, which one is thankful to see explained in this context and not only in research papers which are more difficult to access.'Mathematical Reviews ClippingsThe book features new directions in analysis, with an emphasis on Hilbert space, mathematical physics, and stochastic processes. We interpret 'non-commutative analysis' broadly to include representations of non-Abelian groups, and non-Abelian algebras; emphasis on Lie groups and operator algebras (C* algebras and von Neumann algebras.)A second theme is commutative and non-commutative harmonic analysis, spectral theory, operator theory and their applications. The list of topics includes shift invariant spaces, group action in differential geometry, and frame theory (over-complete bases) and their applications to engineering (signal processing and multiplexing), projective multi-resolutions, and free probability algebras.The book serves as an accessible introduction, offering a timeless presentation, attractive and accessible to students, both in mathematics and in neighboring fields.
Download or read book Non Commutative Harmonic Analysis and Lie Groups written by J. Carmona and published by Springer. This book was released on 2006-11-14 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Representation Theory and Noncommutative Harmonic Analysis I written by Alexandre Kirillov and published by Springer Science & Business Media. This book was released on 1994-11-23 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-part survey provides a short review of the classical part of representation theory, carefully exposing the structure of the theory without overwhelming readers with details, and deals with representations of Virasoro and Kac-Moody algebra. It presents a wealth of recent results on representations of infinite-dimensional groups.
Download or read book Harmonic Analysis on the Heisenberg Group written by Sundaram Thangavelu and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Heisenberg group plays an important role in several branches of mathematics, such as representation theory, partial differential equations, number theory, several complex variables and quantum mechanics. This monograph deals with various aspects of harmonic analysis on the Heisenberg group, which is the most commutative among the non-commutative Lie groups, and hence gives the greatest opportunity for generalizing the remarkable results of Euclidean harmonic analysis. The aim of this text is to demonstrate how the standard results of abelian harmonic analysis take shape in the non-abelian setup of the Heisenberg group. Thangavelu’s exposition is clear and well developed, and leads to several problems worthy of further consideration. Any reader who is interested in pursuing research on the Heisenberg group will find this unique and self-contained text invaluable.
Download or read book Analysis on Lie Groups written by Jacques Faraut and published by Cambridge University Press. This book was released on 2008-05-22 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained text concentrates on the perspective of analysis, assuming only elementary knowledge of linear algebra and basic differential calculus. The author describes, in detail, many interesting examples, including formulas which have not previously appeared in book form. Topics covered include the Haar measure and invariant integration, spherical harmonics, Fourier analysis and the heat equation, Poisson kernel, the Laplace equation and harmonic functions. Perfect for advanced undergraduates and graduates in geometric analysis, harmonic analysis and representation theory, the tools developed will also be useful for specialists in stochastic calculation and the statisticians. With numerous exercises and worked examples, the text is ideal for a graduate course on analysis on Lie groups.
Download or read book A First Course in Harmonic Analysis written by Anton Deitmar and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces harmonic analysis at an undergraduate level. In doing so it covers Fourier analysis and paves the way for Poisson Summation Formula. Another central feature is that is makes the reader aware of the fact that both principal incarnations of Fourier theory, the Fourier series and the Fourier transform, are special cases of a more general theory arising in the context of locally compact abelian groups. The final goal of this book is to introduce the reader to the techniques used in harmonic analysis of noncommutative groups. These techniques are explained in the context of matrix groups as a principal example.
Download or read book Noncommutative Harmonic Analysis written by Michael Eugene Taylor and published by American Mathematical Soc.. This book was released on 1986 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explores some basic roles of Lie groups in linear analysis, with particular emphasis on the generalizations of the Fourier transform and the study of partial differential equations.
Download or read book Stochastic Models Information Theory and Lie Groups Volume 1 written by Gregory S. Chirikjian and published by Springer Science & Business Media. This book was released on 2009-09-02 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique two-volume set presents the subjects of stochastic processes, information theory, and Lie groups in a unified setting, thereby building bridges between fields that are rarely studied by the same people. Unlike the many excellent formal treatments available for each of these subjects individually, the emphasis in both of these volumes is on the use of stochastic, geometric, and group-theoretic concepts in the modeling of physical phenomena. Stochastic Models, Information Theory, and Lie Groups will be of interest to advanced undergraduate and graduate students, researchers, and practitioners working in applied mathematics, the physical sciences, and engineering. Extensive exercises and motivating examples make the work suitable as a textbook for use in courses that emphasize applied stochastic processes or differential geometry.
Download or read book Noncommutative Geometry written by Alain Connes and published by Springer. This book was released on 2003-12-15 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: Noncommutative Geometry is one of the most deep and vital research subjects of present-day Mathematics. Its development, mainly due to Alain Connes, is providing an increasing number of applications and deeper insights for instance in Foliations, K-Theory, Index Theory, Number Theory but also in Quantum Physics of elementary particles. The purpose of the Summer School in Martina Franca was to offer a fresh invitation to the subject and closely related topics; the contributions in this volume include the four main lectures, cover advanced developments and are delivered by prominent specialists.
Download or read book Geometric and Harmonic Analysis on Homogeneous Spaces written by Ali Baklouti and published by Springer Nature. This book was released on 2019-08-31 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a number of important contributions focusing on harmonic analysis and representation theory of Lie groups. All were originally presented at the 5th Tunisian–Japanese conference “Geometric and Harmonic Analysis on Homogeneous Spaces and Applications”, which was held at Mahdia in Tunisia from 17 to 21 December 2017 and was dedicated to the memory of the brilliant Tunisian mathematician Majdi Ben Halima. The peer-reviewed contributions selected for publication have been modified and are, without exception, of a standard equivalent to that in leading mathematical periodicals. Highlighting the close links between group representation theory and harmonic analysis on homogeneous spaces and numerous mathematical areas, such as number theory, algebraic geometry, differential geometry, operator algebra, partial differential equations and mathematical physics, the book is intended for researchers and students working in the area of commutative and non-commutative harmonic analysis as well as group representations.
Download or read book Non Commutative Harmonic Analysis and Lie Groups written by Jacques Carmona and published by . This book was released on 1981 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Non Commutative Harmonic Analysis and Lie Groups written by J. Carmona and published by . This book was released on 2014-01-15 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Probability on Compact Lie Groups written by David Applebaum and published by Springer. This book was released on 2014-06-26 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability theory on compact Lie groups deals with the interaction between “chance” and “symmetry,” a beautiful area of mathematics of great interest in its own sake but which is now also finding increasing applications in statistics and engineering (particularly with respect to signal processing). The author gives a comprehensive introduction to some of the principle areas of study, with an emphasis on applicability. The most important topics presented are: the study of measures via the non-commutative Fourier transform, existence and regularity of densities, properties of random walks and convolution semigroups of measures and the statistical problem of deconvolution. The emphasis on compact (rather than general) Lie groups helps readers to get acquainted with what is widely seen as a difficult field but which is also justified by the wealth of interesting results at this level and the importance of these groups for applications. The book is primarily aimed at researchers working in probability, stochastic analysis and harmonic analysis on groups. It will also be of interest to mathematicians working in Lie theory and physicists, statisticians and engineers who are working on related applications. A background in first year graduate level measure theoretic probability and functional analysis is essential; a background in Lie groups and representation theory is certainly helpful but the first two chapters also offer orientation in these subjects.
Download or read book Harmonic Functions on Groups and Fourier Algebras written by Cho-Ho Chu and published by Springer. This book was released on 2004-10-11 with total page 113 pages. Available in PDF, EPUB and Kindle. Book excerpt: This research monograph introduces some new aspects to the theory of harmonic functions and related topics. The authors study the analytic algebraic structures of the space of bounded harmonic functions on locally compact groups and its non-commutative analogue, the space of harmonic functionals on Fourier algebras. Both spaces are shown to be the range of a contractive projection on a von Neumann algebra and therefore admit Jordan algebraic structures. This provides a natural setting to apply recent results from non-associative analysis, semigroups and Fourier algebras. Topics discussed include Poisson representations, Poisson spaces, quotients of Fourier algebras and the Murray-von Neumann classification of harmonic functionals.