EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Noise in Solid State Devices and Circuits

Download or read book Noise in Solid State Devices and Circuits written by Albert Van der Ziel and published by Wiley-Interscience. This book was released on 1986-05-13 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gives basic and up-to-date information about noise sources in electronic devices. Demonstrates how this information can be used to calculate the noise performance, in particular the noise figure, of electronic circuits using these devices. Optimization procedures, both for the circuits and for the devices, are then devised based on these data. Gives an elementary treatment of thermal noise, diffusion noise, and velocity-fluctuation noise, including quantum effects in thermal noise and maser noise.

Book Noise in High Frequency Circuits and Oscillators

Download or read book Noise in High Frequency Circuits and Oscillators written by Burkhard Schiek and published by John Wiley & Sons. This book was released on 2006-07-14 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: A classroom-tested book addressing key issues of electrical noise This book examines noise phenomena in linear and nonlinear high-frequency circuits from both qualitative and quantitative perspectives. The authors explore important noise mechanisms using equivalent sources and analytical and numerical methods. Readers learn how to manage electrical noise to improve the sensitivity and resolution of communication, navigation, measurement, and other electronic systems. Noise in High-Frequency Circuits and Oscillators has its origins in a university course taught by the authors. As a result, it is thoroughly classroom-tested and carefully structured to facilitate learning. Readers are given a solid foundation in the basics that allows them to proceed to more advanced and sophisticated themes such as computer-aided noise simulation of high-frequency circuits. Following a discussion of mathematical and system-oriented fundamentals, the book covers: * Noise of linear one- and two-ports * Measurement of noise parameters * Noise of diodes and transistors * Parametric circuits * Noise in nonlinear circuits * Noise in oscillators * Quantization noise Each chapter contains a set of numerical and analytical problems that enable readers to apply their newfound knowledge to real-world problems. Solutions are provided in the appendices. With their many years of classroom experience, the authors have designed a book that is ideal for graduate students in engineering and physics. It also addresses key issues and points to solutions for engineers working in the burgeoning satellite and wireless communications industries.

Book Analysis and Simulation of Noise in Nonlinear Electronic Circuits and Systems

Download or read book Analysis and Simulation of Noise in Nonlinear Electronic Circuits and Systems written by Alper Demir and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: In electronic circuit and system design, the word noise is used to refer to any undesired excitation on the system. In other contexts, noise is also used to refer to signals or excitations which exhibit chaotic or random behavior. The source of noise can be either internal or external to the system. For instance, the thermal and shot noise generated within integrated circuit devices are in ternal noise sources, and the noise picked up from the environment through electromagnetic interference is an external one. Electromagnetic interference can also occur between different components of the same system. In integrated circuits (Ies), signals in one part of the system can propagate to the other parts of the same system through electromagnetic coupling, power supply lines and the Ie substrate. For instance, in a mixed-signal Ie, the switching activity in the digital parts of the circuit can adversely affect the performance of the analog section of the circuit by traveling through the power supply lines and the substrate. Prediction of the effect of these noise sources on the performance of an electronic system is called noise analysis or noise simulation. A methodology for the noise analysis or simulation of an electronic system usually has the following four components: 2 NOISE IN NONLINEAR ELECTRONIC CIRCUITS • Mathematical representations or models for the noise sources. • Mathematical model or representation for the system that is under the in fluence of the noise sources.

Book A Guide to Noise in Microwave Circuits

Download or read book A Guide to Noise in Microwave Circuits written by Peter Heymann and published by John Wiley & Sons. This book was released on 2021-12-29 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: A GUIDE TO NOISE IN MICROWAVE CIRCUITS A fulsome exploration of critical considerations in microwave circuit noise In A Guide to Noise in Microwave Circuits: Devices, Circuits, and Measurement, a team of distinguished researchers deliver a comprehensive introduction to noise in microwave circuits, with a strong focus on noise characterization of devices and circuits. The book describes fluctuations beginning with their physical origin and touches on the general description of noise in linear and non-linear circuits. Several chapters are devoted to the description of noise measurement ­techniques and the interpretation of measured data. A full chapter is dedicated to noise sources as well, including thermal, shot, plasma, and current. A Guide to Noise in Microwave Circuits offers examples of measurement problems—like low noise block (LNB) of satellite television – and explores equipment and measurement methods, like the Y, cold source, and 7-state method. This book also includes: A thorough introduction to foundational terms in microwave circuit noise, including average values, amplitude distribution, autocorrelation, cross-correlation, and noise spectra Comprehensive explorations of common noise sources, including thermal noise, the Nyquist formula and thermal radiation, shot noise, plasma noise, and more Practical discussions of noise and linear networks, including narrowband noise In-depth examinations of calculation methods for noise quantities, including noise voltages, currents, and spectra, the noise correlation matrix, and the noise of simple passive networks Perfect for graduate students specializing in microwave and wireless electronics, A Guide to Noise in Microwave Circuits: Devices, Circuits, and Measurement will also earn a place in the libraries of professional engineers working in microwave or wireless circuits and system design.

Book Noise in Semiconductor Devices

Download or read book Noise in Semiconductor Devices written by Fabrizio Bonani and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides an overview of the physical basis of noise in semiconductor devices, and a detailed treatment of numerical noise simulation in small-signal conditions. It presents innovative developments in the noise simulation of semiconductor devices operating in large-signal quasi-periodic conditions.

Book Electronic Noise and Interfering Signals

Download or read book Electronic Noise and Interfering Signals written by Gabriel Vasilescu and published by Springer Science & Business Media. This book was released on 2006-01-17 with total page 716 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electronic Noise and Interfering Signals is a comprehensive reference book on noise and interference in electronic circuits, with particular focus on low-noise design. The first part of the book deals with mechanisms, modelling, and computation of intrinsic noise which is generated in every electronic device. The second part analyzes the coupling mechanisms which can lead to a contamination of circuits by parasitic signals and provides appropriate solutions to this problem. The last part contains more than 100 practical, elaborate case studies. The book requires no advanced mathematical training as it introduces the fundamental methods. Moreover, it provides insight into computational noise analysis with SPICE and NOF, a software developed by the author. The book addresses designers of electronic circuits as well as researchers from electrical engineering, physics, and material science. It should also be of interest for undergraduate and graduate students.

Book Advanced Signal Integrity for High Speed Digital Designs

Download or read book Advanced Signal Integrity for High Speed Digital Designs written by Stephen H. Hall and published by John Wiley & Sons. This book was released on 2011-09-20 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: A synergistic approach to signal integrity for high-speed digital design This book is designed to provide contemporary readers with an understanding of the emerging high-speed signal integrity issues that are creating roadblocks in digital design. Written by the foremost experts on the subject, it leverages concepts and techniques from non-related fields such as applied physics and microwave engineering and applies them to high-speed digital design—creating the optimal combination between theory and practical applications. Following an introduction to the importance of signal integrity, chapter coverage includes: Electromagnetic fundamentals for signal integrity Transmission line fundamentals Crosstalk Non-ideal conductor models, including surface roughness and frequency-dependent inductance Frequency-dependent properties of dielectrics Differential signaling Mathematical requirements of physical channels S-parameters for digital engineers Non-ideal return paths and via resonance I/O circuits and models Equalization Modeling and budgeting of timing jitter and noise System analysis using response surface modeling Each chapter includes many figures and numerous examples to help readers relate the concepts to everyday design and concludes with problems for readers to test their understanding of the material. Advanced Signal Integrity for High-Speed Digital Designs is suitable as a textbook for graduate-level courses on signal integrity, for programs taught in industry for professional engineers, and as a reference for the high-speed digital designer.

Book Low Noise Wide Band Amplifiers in Bipolar and CMOS Technologies

Download or read book Low Noise Wide Band Amplifiers in Bipolar and CMOS Technologies written by Zhong Yuan Chong and published by Springer Science & Business Media. This book was released on 1990-11-30 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analog circuit design has grown in importance because so many circuits cannot be realized with digital techniques. Examples are receiver front-ends, particle detector circuits, etc. Actually, all circuits which require high precision, high speed and low power consumption need analog solutions. High precision also needs low noise. Much has been written already on low noise design and optimization for low noise. Very little is available however if the source is not resistive but capacitive or inductive as is the case with antennas or semiconductor detectors. This book provides design techniques for these types of optimization. This book is thus intended firstly for engineers on senior or graduate level who have already designed their first operational amplifiers and want to go further. It is especially for engineers who do not want just a circuit but the best circuit. Design techniques are given that lead to the best performance within a certain technology. Moreover, this is done for all important technologies such as bipolar, CMOS and BiCMOS. Secondly, this book is intended for engineers who want to understand what they are doing. The design techniques are intended to provide insight. In this way, the design techniques can easily be extended to other circuits as well. Also, the design techniques form a first step towards design automation. Thirdly, this book is intended for analog design engineers who want to become familiar with both bipolar and CMOS technologies and who want to learn more about which transistor to choose in BiCMOS.

Book Signal Integrity

Download or read book Signal Integrity written by Eric Bogatin and published by Prentice Hall Professional. This book was released on 2004 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thorough review of the fundamental principles associated with signal integrity provides engineering principles behind signal integrity effects, and applies this understanding to solving problems.

Book Noise and Fluctuations in Electronic Devices and Circuits

Download or read book Noise and Fluctuations in Electronic Devices and Circuits written by Frank Neville Hosband Robinson and published by Oxford University Press, USA. This book was released on 1974 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Low Frequency Noise in Advanced MOS Devices

Download or read book Low Frequency Noise in Advanced MOS Devices written by Martin Haartman and published by Springer Science & Business Media. This book was released on 2007-08-23 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an introduction to noise, describing fundamental noise sources and basic circuit analysis, discussing characterization of low-frequency noise and offering practical advice that bridges concepts of noise theory and modelling, characterization, CMOS technology and circuits. The text offers the latest research, reviewing the most recent publications and conference presentations. The book concludes with an introduction to noise in analog/RF circuits and describes how low-frequency noise can affect these circuits.

Book Noise Reduction Techniques in Electronic Systems

Download or read book Noise Reduction Techniques in Electronic Systems written by Henry W. Ott and published by Wiley-Interscience. This book was released on 1988-03-23 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: This updated and expanded version of the very successful first edition offers new chapters on controlling the emission from electronic systems, especially digital systems, and on low-cost techniques for providing electromagnetic compatibility (EMC) for consumer products sold in a competitive market. There is also a new chapter on the susceptibility of electronic systems to electrostatic discharge. There is more material on FCC regulations, digital circuit noise and layout, and digital circuit radiation. Virtually all the material in the first edition has been retained. Contains a new appendix on FCC EMC test procedures.

Book Noise in Electrical Circuits

Download or read book Noise in Electrical Circuits written by Frank Neville Hosband Robinson and published by . This book was released on 1962 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Lecture Notes in Analog Electronics

Download or read book Lecture Notes in Analog Electronics written by Vančo Litovski and published by Springer Nature. This book was released on with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Noise in Devices and Circuits

Download or read book Noise in Devices and Circuits written by and published by . This book was released on 2003 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Noise Coupling in System on Chip

Download or read book Noise Coupling in System on Chip written by Thomas Noulis and published by CRC Press. This book was released on 2018-01-09 with total page 519 pages. Available in PDF, EPUB and Kindle. Book excerpt: Noise Coupling is the root-cause of the majority of Systems on Chip (SoC) product fails. The book discusses a breakthrough substrate coupling analysis flow and modelling toolset, addressing the needs of the design community. The flow provides capability to analyze noise components, propagating through the substrate, the parasitic interconnects and the package. Using this book, the reader can analyze and avoid complex noise coupling that degrades RF and mixed signal design performance, while reducing the need for conservative design practices. With chapters written by leading international experts in the field, novel methodologies are provided to identify noise coupling in silicon. It additionally features case studies that can be found in any modern CMOS SoC product for mobile communications, automotive applications and readout front ends.

Book Noise and Fluctuations Control in Electronic Devices

Download or read book Noise and Fluctuations Control in Electronic Devices written by Alexander A. Balandin and published by Amer Scientific Pub. This book was released on 2002-01-01 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: Noise and Fluctuations Control in Electronic Devices is the first single reference source to bring together the latest aspects of noise research for a wide range of multidisciplinary audiences. The goal of this book is to give an update of state-of-the-art in this interdisciplinary field, while focusing on new trends in electronic device noise research. Such new trends include investigation of noise in electronic devices based on novel materials, effects of the downscaling on the device noise performance, fluctuations and noise control in nanodevices, effective methods of noise control and suppression, etc. In addition, the book presents a historic overview of the development of the kinetic theory of fluctuation, essential for understanding of the present state-of-the art. This book contains 18 state-of-the-art review chapters written by 33 internationally renowned experts from 15 countries. This book has about 1,500 bibliographical citations and hundreds of illustrations, figures, tables and equations. This book is a definite reference source for students, scientists, engineers, and specialists both in academia and industry working in such different fields as electronic and optoelectronic devices, electrical and electronic engineering, solid-state physics, nanotechnology, wireless communication, telecommunication, and semiconductor device technology.