EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Noise  Dynamics and Squeezed Light in Quantum Dot and Interband Cascade Lasers

Download or read book Noise Dynamics and Squeezed Light in Quantum Dot and Interband Cascade Lasers written by Shiyuan Zhao and published by Springer Nature. This book was released on with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Quantum Dot Lasers on Silicon

Download or read book Quantum Dot Lasers on Silicon written by Bozhang Dong and published by Springer Nature. This book was released on 2023-02-04 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides guidelines and design rules for developing high-performance, low-cost, and energy-efficient quantum-dot (QD) lasers for silicon photonic integrated circuits (PIC), optical frequency comb generation, and quantum information systems. To this end, the nonlinear properties and dynamics of QD lasers on silicon are investigated in depth by both theoretical analysis and experiment. This book aims at addressing four issues encountered in developing silicon PIC: 1) The instability of laser emission caused by the chip-scale back-reflection. During photonic integration, the chip-scale back-reflection is usually responsible for the generation of severe instability (i.e., coherence collapse) from the on-chip source. As a consequence, the transmission performance of the chip could be largely degraded. To overcome this issue, we investigate the nonlinear properties and dynamics of QD laser on Si in this book to understand how can it be applied to isolator-free photonic integration in which the expensive optical isolator can be avoided. Results show that the QD laser exhibits a high degree of tolerance for chip-scale back-reflections in absence of any instability, which is a promising solution for isolator-free applications. 2) The degradation of laser performance at a high operating temperature. In this era of Internet-of-Thing (IoT), about 40% of energy is consumed for cooling in the data center. In this context, it is important to develop a high-temperature continuous-wave (CW) emitted laser source. In this book, we introduce a single-mode distributed feedback (DFB) QD laser with a design of optical wavelength detuning (OWD). By taking advantage of the OWD technique and the high-performance QD with high thermal stability, all the static and dynamical performances of the QD device are improved when the operating temperature is high. This study paves the way for developing uncooled and isolator-free PIC. 3) The limited phase noise level and optical bandwidth of the laser are the bottlenecks for further increasing the transmission capacity. To improve the transmission capacity and meet the requirement of the next generation of high-speed optical communication, we introduce the QD-based optical frequency comb (OFC) laser in this book. Benefiting from the gain broadening effect and the low-noise properties of QD, the OFC laser is realized with high optical bandwidth and low phase noise. We also provide approaches to further improve the laser performance, including the external optical feedback and the optical injection. 4) Platform with rich optical nonlinearities is highly desired by future integrated quantum technologies. In this book, we investigate the nonlinear properties and four-wave mixing (FWM) of QD laser on Si. This study reveals that the FWM efficiency of QD laser is more than ten times higher than that of quantum-well laser, which gives insight into developing a QD-based silicon platform for quantum states of light generation. Based on the results in this book, scientists, researchers, and engineers can come up with an informed judgment in utilizing the QD laser for applications ranging from classical silicon PIC to integrated quantum technologies.

Book Chemical Abstracts

Download or read book Chemical Abstracts written by and published by . This book was released on 2002 with total page 2692 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Elements of Quantum Optics

    Book Details:
  • Author : Pierre Meystre
  • Publisher : Springer Science & Business Media
  • Release : 2013-03-09
  • ISBN : 3662038773
  • Pages : 432 pages

Download or read book Elements of Quantum Optics written by Pierre Meystre and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "This is a book that should be found in any physics library. It is extremely useful for all graduate students, Ph.D. students and researchers interested in the quantum physics of light." Optics & Photonics News

Book Applied Nanophotonics

    Book Details:
  • Author : Sergey V. Gaponenko
  • Publisher : Cambridge University Press
  • Release : 2019
  • ISBN : 1107145503
  • Pages : 453 pages

Download or read book Applied Nanophotonics written by Sergey V. Gaponenko and published by Cambridge University Press. This book was released on 2019 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible yet rigorous introduction to nanophotonics, covering basic principles, technology, and applications in lighting, lasers, and photovoltaics. Providing a wealth of information on materials and devices, and over 150 color figures, it is the 'go-to' guide for students in electrical engineering taking courses in nanophotonics.

Book Handbook of Optoelectronic Device Modeling and Simulation

Download or read book Handbook of Optoelectronic Device Modeling and Simulation written by Joachim Piprek and published by CRC Press. This book was released on 2017-10-12 with total page 887 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a comprehensive survey of fundamental concepts and methods for optoelectronic device modeling and simulation. Gives a broad overview of concepts with concise explanations illustrated by real results. Compares different levels of modeling, from simple analytical models to complex numerical models. Discusses practical methods of model validation. Includes an overview of numerical techniques.

Book Introduction to Nanophotonics

Download or read book Introduction to Nanophotonics written by Sergey V. Gaponenko and published by Cambridge University Press. This book was released on 2010-04-08 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanophotonics is where photonics merges with nanoscience and nanotechnology, and where spatial confinement considerably modifies light propagation and light-matter interaction. Describing the basic phenomena, principles, experimental advances and potential impact of nanophotonics, this graduate-level textbook is ideal for students in physics, optical and electronic engineering and materials science. The textbook highlights practical issues, material properties and device feasibility, and includes the basic optical properties of metals, semiconductors and dielectrics. Mathematics is kept to a minimum and theoretical issues are reduced to a conceptual level. Each chapter ends in problems so readers can monitor their understanding of the material presented. The introductory quantum theory of solids and size effects in semiconductors are considered to give a parallel discussion of wave optics and wave mechanics of nanostructures. The physical and historical interplay of wave optics and quantum mechanics is traced. Nanoplasmonics, an essential part of modern photonics, is also included.

Book 2D Materials

Download or read book 2D Materials written by Phaedon Avouris and published by Cambridge University Press. This book was released on 2017-06-29 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn about the most recent advances in 2D materials with this comprehensive and accessible text. Providing all the necessary materials science and physics background, leading experts discuss the fundamental properties of a wide range of 2D materials, and their potential applications in electronic, optoelectronic and photonic devices. Several important classes of materials are covered, from more established ones such as graphene, hexagonal boron nitride, and transition metal dichalcogenides, to new and emerging materials such as black phosphorus, silicene, and germanene. Readers will gain an in-depth understanding of the electronic structure and optical, thermal, mechanical, vibrational, spin and plasmonic properties of each material, as well as the different techniques that can be used for their synthesis. Presenting a unified perspective on 2D materials, this is an excellent resource for graduate students, researchers and practitioners working in nanotechnology, nanoelectronics, nanophotonics, condensed matter physics, and chemistry.

Book Quantum Electronics and Laser Science Conference

Download or read book Quantum Electronics and Laser Science Conference written by and published by . This book was released on 1995 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Supersymmetry and Trace Formulae

Download or read book Supersymmetry and Trace Formulae written by Igor V. Lerner and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: The motion of a particle in a random potential in two or more dimensions is chaotic, and the trajectories in deterministically chaotic systems are effectively random. It is therefore no surprise that there are links between the quantum properties of disordered systems and those of simple chaotic systems. The question is, how deep do the connec tions go? And to what extent do the mathematical techniques designed to understand one problem lead to new insights into the other? The canonical problem in the theory of disordered mesoscopic systems is that of a particle moving in a random array of scatterers. The aim is to calculate the statistical properties of, for example, the quantum energy levels, wavefunctions, and conductance fluctuations by averaging over different arrays; that is, by averaging over an ensemble of different realizations of the random potential. In some regimes, corresponding to energy scales that are large compared to the mean level spacing, this can be done using diagrammatic perturbation theory. In others, where the discreteness of the quantum spectrum becomes important, such an approach fails. A more powerful method, devel oped by Efetov, involves representing correlation functions in terms of a supersymmetric nonlinear sigma-model. This applies over a wider range of energy scales, covering both the perturbative and non-perturbative regimes. It was proved using this method that energy level correlations in disordered systems coincide with those of random matrix theory when the dimensionless conductance tends to infinity.

Book Handbook of Surface and Colloid Chemistry

Download or read book Handbook of Surface and Colloid Chemistry written by K. S. Birdi and published by CRC Press. This book was released on 2015-06-25 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edition of the Handbook of Surface and Colloid Chemistry informs you of significant recent developments in the field. It highlights new applications and provides revised insight on surface and colloid chemistry's growing role in industrial innovations. The contributors to each chapter are internationally recognized experts. Several chapter

Book Spatial Solitons

    Book Details:
  • Author : Stefano Trillo
  • Publisher : Springer Science & Business Media
  • Release : 2001-09-11
  • ISBN : 9783540416531
  • Pages : 492 pages

Download or read book Spatial Solitons written by Stefano Trillo and published by Springer Science & Business Media. This book was released on 2001-09-11 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: Soliton-based concepts open the road for newly designed laser sources, new frequency converters and high-intensity laser-material interactions. Optical solitons as stable spatial patterns of complex nonlinear systems allow for the control of the diffraction of optical beams. Solitons also prevent unwanted chaotic behavior. Thus, solitary wave physics plays a significant role from modern optical physics to optical communication, optical switching, and optical storage. The book gives an updated overview of optical solitons and can serve as a reference and guide for advanced students and scientists working in the field and related areas of science where solitons are observed.

Book Single Semiconductor Quantum Dots

Download or read book Single Semiconductor Quantum Dots written by Peter Michler and published by Springer Science & Business Media. This book was released on 2009-06-13 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews recent advances in the field of semiconductor quantum dots via contributions from prominent researchers in the scientific community. Special focus is given to optical, quantum optical, and spin properties of single quantum dots.

Book Building Electro Optical Systems

Download or read book Building Electro Optical Systems written by Philip C. D. Hobbs and published by John Wiley & Sons. This book was released on 2011-09-20 with total page 750 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the First Edition "Now a new laboratory bible for optics researchers has joined the list: it is Phil Hobbs's Building Electro-Optical Systems: Making It All Work." —Tony Siegman, Optics & Photonics News Building a modern electro-optical instrument may be the most interdisciplinary job in all of engineering. Be it a DVD player or a laboratory one-off, it involves physics, electrical engineering, optical engineering, and computer science interacting in complex ways. This book will help all kinds of technical people sort through the complexity and build electro-optical systems that just work, with maximum insight and minimum trial and error. Written in an engaging and conversational style, this Second Edition has been updated and expanded over the previous edition to reflect technical advances and a great many conversations with working designers. Key features of this new edition include: Expanded coverage of detectors, lasers, photon budgets, signal processing scheme planning, and front ends Coverage of everything from basic theory and measurement principles to design debugging and integration of optical and electronic systems Supplementary material is available on an ftp site, including an additional chapter on thermal Control and Chapter problems highly relevant to real-world design Extensive coverage of high performance optical detection and laser noise cancellation Each chapter is full of useful lore from the author's years of experience building advanced instruments. For more background, an appendix lists 100 good books in all relevant areas, introductory as well as advanced. Building Electro-Optical Systems: Making It All Work, Second Edition is essential reading for researchers, students, and professionals who have systems to build.

Book Phosphors  Up Conversion Nano Particles  Quantum Dots and Their Applications

Download or read book Phosphors Up Conversion Nano Particles Quantum Dots and Their Applications written by Ru-Shi Liu and published by Springer. This book was released on 2016-09-01 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces readers to fundamental information on phosphor and quantum dots. It comprehensively reviews the latest research advances in and applications of fluoride phosphors, oxide phosphors, nitridosilicate phosphors and various quantum dot materials. Phosphors and phosphor-based quantum dot materials have recently gained considerable scientific interest due to their wide range of applications in lighting, displays, medical and telecommunication technologies. This work will be of great interest to researchers and graduate students in materials sciences and chemistry who wish to learn more about the principles, synthesis and analysis of phosphors and quantum dot materials.

Book Introduction to Optical Quantum Information Processing

Download or read book Introduction to Optical Quantum Information Processing written by Pieter Kok and published by Cambridge University Press. This book was released on 2010-04-22 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum information processing offers fundamental improvements over classical information processing, such as computing power, secure communication, and high-precision measurements. However, the best way to create practical devices is not yet known. This textbook describes the techniques that are likely to be used in implementing optical quantum information processors. After developing the fundamental concepts in quantum optics and quantum information theory, the book shows how optical systems can be used to build quantum computers according to the most recent ideas. It discusses implementations based on single photons and linear optics, optically controlled atoms and solid-state systems, atomic ensembles, and optical continuous variables. This book is ideal for graduate students beginning research in optical quantum information processing. It presents the most important techniques of the field using worked examples and over 120 exercises.

Book Quantum and Semi classical Percolation and Breakdown in Disordered Solids

Download or read book Quantum and Semi classical Percolation and Breakdown in Disordered Solids written by Asok K. Sen and published by Springer. This book was released on 2009-04-20 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: This lecture notes in physics volume mainly focuses on the semi classical and qu- tum aspects of percolation and breakdown in disordered, composite or granular s- tems. The main reason for this undertaking has been the fact that, of late, there have been a lot of (theoretical) work on quantum percolation, but there is not even a (single) published review on the topic (and, of course, no book). Also, there are many theoretical and experimental studies on the nonlinear current-voltage characteristics both away from, as well as one approaches, an electrical breakdown in composite materials. Some of the results are quite intriguing and may broadly be explained utilising a semi classical (if not, fully quantum mechanical) tunnelling between - cron or nano-sized metallic islands dispersed separated by thin insulating layers, or in other words, between the dangling ends of small percolation clusters. There have also been several (theoretical) studies of Zener breakdown in Mott or Anderson in- lators. Again, there is no review available, connecting them in any coherent fashion. A compendium volume connecting these experimental and theoretical studies should be unique and very timely, and hence this volume. The book is organised as follows. For completeness, we have started with a short and concise introduction on classical percolation. In the ?rst chapter, D. Stauffer reviews the scaling theory of classical percolation emphasizing (biased) diffusion, without any quantum effects. The next chapter by A. K.