EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Next Generation Seismic Fragility Curves for California Bridges Incorporating the Evolution in Seismic Design Philosophy

Download or read book Next Generation Seismic Fragility Curves for California Bridges Incorporating the Evolution in Seismic Design Philosophy written by Karthik Narayan Ramanathan and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantitative and qualitative assessment of the seismic risk to highway bridges is crucial in pre-earthquake planning, and post-earthquake response of transportation systems. Such assessments provide valuable knowledge about a number of principal effects of earthquakes such as traffic disruption of the overall highway system, impact on the regions' economy and post-earthquake response and recovery, and more recently serve as measures to quantify resilience. Unlike previous work, this study captures unique bridge design attributes specific to California bridge classes along with their evolution over three significant design eras, separated by the historic 1971 San Fernando and 1989 Loma Prieta earthquakes (these events affected changes in bridge seismic design philosophy). This research developed next-generation fragility curves for four multispan concrete bridge classes by synthesizing new knowledge and emerging modeling capabilities, and by closely coordinating new and ongoing national research initiatives with expertise from bridge designers. A multi-phase framework was developed for generating fragility curves, which provides decision makers with essential tools for emergency response, design, planning, policy support, and maximizing investments in bridge retrofit. This framework encompasses generational changes in bridge design and construction details. Parameterized high-fidelity three-dimensional nonlinear analytical models are developed for the portfolios of bridge classes within different design eras. These models incorporate a wide range of geometric and material uncertainties, and their responses are characterized under seismic loadings. Fragility curves were then developed considering the vulnerability of multiple components and thereby help to quantify the performance of highway bridge networks and to study the impact of seismic design principles on the performance within a bridge class. This not only leads to the development of fragility relations that are unique and better suited for bridges in California, but also leads to the creation of better bridge classes and sub-bins that have more consistent performance characteristics than those currently provided by the National Bridge Inventory. Another important feature of this research is associated with the development of damage state definitions and grouping of bridge components in a way that they have similar consequences in terms of repair and traffic implications following a seismic event. These definitions are in alignment with the California Department of Transportation's design and operational experience, thereby enabling better performance assessment, emergency response, and management in the aftermath of a seismic event. The fragility curves developed as a part of this research will be employed in ShakeCast, a web-based post-earthquake situational awareness application that automatically retrieves earthquake shaking data and generates potential damage assessment notifications for emergency managers and responders.

Book Proceedings of 17th Symposium on Earthquake Engineering  Vol  2

Download or read book Proceedings of 17th Symposium on Earthquake Engineering Vol 2 written by Manish Shrikhande and published by Springer Nature. This book was released on 2023-07-19 with total page 823 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents select proceedings of the 17th Symposium on Earthquake Engineering organized by the Department of Earthquake Engineering, Indian Institute of Technology Roorkee. The topics covered in the proceedings include engineering seismology and seismotectonics, earthquake hazard assessment, seismic microzonation and urban planning, dynamic properties of soils and ground response, ground improvement techniques for seismic hazards, computational soil dynamics, dynamic soil–structure interaction, codal provisions on earthquake-resistant design, seismic evaluation and retrofitting of structures, earthquake disaster mitigation and management, and many more. This book also discusses relevant issues related to earthquakes, such as human response and socioeconomic matters, post-earthquake rehabilitation, earthquake engineering education, public awareness, participation and enforcement of building safety laws, and earthquake prediction and early warning system. This book is a valuable reference for researchers and professionals working in the area of earthquake engineering.

Book Routledge Handbook of Sustainable and Resilient Infrastructure

Download or read book Routledge Handbook of Sustainable and Resilient Infrastructure written by Paolo Gardoni and published by Routledge. This book was released on 2018-12-17 with total page 951 pages. Available in PDF, EPUB and Kindle. Book excerpt: To best serve current and future generations, infrastructure needs to be resilient to the changing world while using limited resources in a sustainable manner. Research on and funding towards sustainability and resilience are growing rapidly, and significant research is being carried out at a number of institutions and centers worldwide. This handbook brings together current research on sustainable and resilient infrastructure and, in particular, stresses the fundamental nexus between sustainability and resilience. It aims to coalesce work from a large and diverse group of contributors across a wide range of disciplines including engineering, technology and informatics, urban planning, public policy, economics, and finance. Not only does it present a theoretical formulation of sustainability and resilience but it also demonstrates how these ideals can be realized in practice. This work will provide a reference text to students and scholars of a number of disciplines.

Book Hydro Environmental Analysis

Download or read book Hydro Environmental Analysis written by James L. Martin and published by CRC Press. This book was released on 2013-12-04 with total page 5742 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focusing on fundamental principles, Hydro-Environmental Analysis: Freshwater Environments presents in-depth information about freshwater environments and how they are influenced by regulation. It provides a holistic approach, exploring the factors that impact water quality and quantity, and the regulations, policy and management methods that are necessary to maintain this vital resource. It offers a historical viewpoint as well as an overview and foundation of the physical, chemical, and biological characteristics affecting the management of freshwater environments. The book concentrates on broad and general concepts, providing an interdisciplinary foundation. The author covers the methods of measurement and classification; chemical, physical, and biological characteristics; indicators of ecological health; and management and restoration. He also considers common indicators of environmental health; characteristics and operations of regulatory control structures; applicable laws and regulations; and restoration methods. The text delves into rivers and streams in the first half and lakes and reservoirs in the second half. Each section centers on the characteristics of those systems and methods of classification, and then moves on to discuss the physical, chemical, and biological characteristics of each. In the section on lakes and reservoirs, it examines the characteristics and operations of regulatory structures, and presents the methods commonly used to assess the environmental health or integrity of these water bodies. It also introduces considerations for restoration, and presents two unique aquatic environments: wetlands and reservoir tailwaters. Written from an engineering perspective, the book is an ideal introduction to the aquatic and limnological sciences for students of environmental science, as well as students of environmental engineering. It also serves as a reference for engineers and scientists involved in the management, regulation, or restoration of freshwater environments.

Book Life cycle of Structural Systems

Download or read book Life cycle of Structural Systems written by Hitoshi Furuta and published by Routledge. This book was released on 2018-12-07 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to promote the study, research and applications in the design, assessment, prediction, and optimal management of life-cycle performance, safety, reliability, and risk of civil structures and infrastructure systems. The contribution in each chapter presents state-of-the-art as well as emerging applications related to key aspects of the life-cycle civil engineering field. The chapters in this book were originally published as a special issue of Structure and Infrastructure Engineering.

Book Safety  Reliability  Risk and Life Cycle Performance of Structures and Infrastructures

Download or read book Safety Reliability Risk and Life Cycle Performance of Structures and Infrastructures written by George Deodatis and published by CRC Press. This book was released on 2014-02-10 with total page 1112 pages. Available in PDF, EPUB and Kindle. Book excerpt: Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures contains the plenary lectures and papers presented at the 11th International Conference on STRUCTURAL SAFETY AND RELIABILITY (ICOSSAR2013, New York, NY, USA, 16-20 June 2013), and covers major aspects of safety, reliability, risk and life-cycle performance of str

Book Feasibility Studies for Improving Caltrans  Bridge Fragility Relationships

Download or read book Feasibility Studies for Improving Caltrans Bridge Fragility Relationships written by Karthik M. Ramanathan and published by . This book was released on 2012 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Bridge Engineering

Download or read book Bridge Engineering written by W.F. Chen and published by CRC Press. This book was released on 2003-02-27 with total page 479 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mitigating the effects of earthquakes is crucial to bridge design. With chapters culled from the best-selling Bridge Engineering Handbook, this volume sets forth the principles and applications of seismic design, from the necessary geotechnical and dynamic analysis background to seismic isolation and energy dissipation, active control, and retrofit

Book Maintenance  Safety  Risk  Management and Life Cycle Performance of Bridges

Download or read book Maintenance Safety Risk Management and Life Cycle Performance of Bridges written by Nigel Powers and published by CRC Press. This book was released on 2018-07-04 with total page 5447 pages. Available in PDF, EPUB and Kindle. Book excerpt: Maintenance, Safety, Risk, Management and Life-Cycle Performance of Bridges contains lectures and papers presented at the Ninth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2018), held in Melbourne, Australia, 9-13 July 2018. This volume consists of a book of extended abstracts and a USB card containing the full papers of 393 contributions presented at IABMAS 2018, including the T.Y. Lin Lecture, 10 Keynote Lectures, and 382 technical papers from 40 countries. The contributions presented at IABMAS 2018 deal with the state of the art as well as emerging concepts and innovative applications related to the main aspects of bridge maintenance, safety, risk, management and life-cycle performance. Major topics include: new design methods, bridge codes, heavy vehicle and load models, bridge management systems, prediction of future traffic models, service life prediction, residual service life, sustainability and life-cycle assessments, maintenance strategies, bridge diagnostics, health monitoring, non-destructive testing, field testing, safety and serviceability, assessment and evaluation, damage identification, deterioration modelling, repair and retrofitting strategies, bridge reliability, fatigue and corrosion, extreme loads, advanced experimental simulations, and advanced computer simulations, among others. This volume provides both an up-to-date overview of the field of bridge engineering and significant contributions to the process of more rational decision-making on bridge maintenance, safety, risk, management and life-cycle performance of bridges for the purpose of enhancing the welfare of society. The Editors hope that these Proceedings will serve as a valuable reference to all concerned with bridge structure and infrastructure systems, including students, researchers and engineers from all areas of bridge engineering.

Book Performance based Seismic Bridge Design

Download or read book Performance based Seismic Bridge Design written by M. Lee Marsh and published by Transportation Research Board. This book was released on 2013 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: "TRB's National Cooperative Highway Research Program (NCHRP) Synthesis 440, Performance-Based Seismic Bridge Design (PBSD) summarizes the current state of knowledge and practice for PBSD. PBSD is the process that links decision making for facility design with seismic input, facility response, and potential facility damage. The goal of PBSD is to provide decision makers and stakeholders with data that will enable them to allocate resources for construction based on levels of desired seismic performance"--Publisher's description.

Book Seismic Design and Retrofit of Bridges

Download or read book Seismic Design and Retrofit of Bridges written by M. J. N. Priestley and published by John Wiley & Sons. This book was released on 1996-04-12 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: Because of their structural simplicity, bridges tend to beparticularly vulnerable to damage and even collapse when subjectedto earthquakes or other forms of seismic activity. Recentearthquakes, such as the ones in Kobe, Japan, and Oakland,California, have led to a heightened awareness of seismic risk andhave revolutionized bridge design and retrofit philosophies. In Seismic Design and Retrofit of Bridges, three of the world's topauthorities on the subject have collaborated to produce the mostexhaustive reference on seismic bridge design currently available.Following a detailed examination of the seismic effects of actualearthquakes on local area bridges, the authors demonstrate designstrategies that will make these and similar structures optimallyresistant to the damaging effects of future seismicdisturbances. Relying heavily on worldwide research associated with recentquakes, Seismic Design and Retrofit of Bridges begins with anin-depth treatment of seismic design philosophy as it applies tobridges. The authors then describe the various geotechnicalconsiderations specific to bridge design, such as soil-structureinteraction and traveling wave effects. Subsequent chapters coverconceptual and actual design of various bridge superstructures, andmodeling and analysis of these structures. As the basis for their design strategies, the authors' focus is onthe widely accepted capacity design approach, in which particularlyvulnerable locations of potentially inelastic flexural deformationare identified and strengthened to accommodate a greater degree ofstress. The text illustrates how accurate application of thecapacity design philosophy to the design of new bridges results instructures that can be expected to survive most earthquakes withonly minor, repairable damage. Because the majority of today's bridges were built before thecapacity design approach was understood, the authors also devoteseveral chapters to the seismic assessment of existing bridges,with the aim of designing and implementing retrofit measures toprotect them against the damaging effects of future earthquakes.These retrofitting techniques, though not considered appropriate inthe design of new bridges, are given considerable emphasis, sincethey currently offer the best solution for the preservation ofthese vital and often historically valued thoroughfares. Practical and applications-oriented, Seismic Design and Retrofit ofBridges is enhanced with over 300 photos and line drawings toillustrate key concepts and detailed design procedures. As the onlytext currently available on the vital topic of seismic bridgedesign, it provides an indispensable reference for civil,structural, and geotechnical engineers, as well as students inrelated engineering courses. A state-of-the-art text on earthquake-proof design and retrofit ofbridges Seismic Design and Retrofit of Bridges fills the urgent need for acomprehensive and up-to-date text on seismic-ally resistant bridgedesign. The authors, all recognized leaders in the field,systematically cover all aspects of bridge design related toseismic resistance for both new and existing bridges. * A complete overview of current design philosophy for bridges,with related seismic and geotechnical considerations * Coverage of conceptual design constraints and their relationshipto current design alternatives * Modeling and analysis of bridge structures * An exhaustive look at common building materials and theirresponse to seismic activity * A hands-on approach to the capacity design process * Use of isolation and dissipation devices in bridge design * Important coverage of seismic assessment and retrofit design ofexisting bridges

Book Proceedings of the Canadian Society of Civil Engineering Annual Conference 2022

Download or read book Proceedings of the Canadian Society of Civil Engineering Annual Conference 2022 written by Rishi Gupta and published by Springer Nature. This book was released on with total page 1270 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Seismic Response and Analytical Fragility Functions for Curved Concrete Box girder Bridges

Download or read book Seismic Response and Analytical Fragility Functions for Curved Concrete Box girder Bridges written by Reihaneh Sarraf Shirazi and published by . This book was released on 2015 with total page 642 pages. Available in PDF, EPUB and Kindle. Book excerpt: Curved bridges are constructed to conform to geometric constraints resulting from traffic and structural restrictions. They are different from their straight counterparts since the response coupling in the longitudinal and transverse directions and rotation of the superstructure may lead to significantly different seismic response. Observations from past earthquakes highlighted the seismic vulnerability of these bridges due to this coupled response. The consequence of bridge damage on the performance of transportation system is commonly assessed through Seismic Risk Assessment (SRA) of lifeline systems. Thus, seismic fragility curves are essential input to SRA to estimate damage to highway bridges and consequently to the network. The literature review shows shortcomings in fragility studies on the effect of horizontal curvature of bridges, specifically concrete box-girder bridges. This study aims to fill in the gap on the current state-of-the-knowledge in the seismic response and vulnerability of curved concrete box-girder bridges. Since this bridge type is common in California, the modern details adopted by CALTRANS along with the current seismic design considerations from SDC (2013) are used to select the representative benchmark bridges. To incorporate the uncertainty in geometrical, structural, and material properties of bridges into the analytical models, five sets of statistical bridge samples (each includes 160 bridges) with various subtended angles are developed. These bridge models are subjected to four sets of ground motions representing different site soil conditions and spectral characteristics. A total of 800 response history analyses are performed and the results are used to develop analytical component and system fragility functions for a range of subtended angles. A comprehensive study on the effect of horizontal curvature on the bridge dynamic characteristics and component seismic response is conducted. The median of system (bridge) fragility curves are proposed as a function of the subtended angle for each ground motion set. These functions can be used as input into SRA tools. The fragility analysis shows that the seismic vulnerability of bridges depends on the soil condition of the site and ground motion characteristics as well as the horizontal curvature of the bridge. Columns are found to have the most significant contribution to the system fragility curves. The analyses confirm that the current seismic details including PTFE/spherical bearings and isolated shear keys, suggested by CALTRANS, achieve the objectives of capacity-protected design of piles. Since the dynamic characteristics of bridges are sensitive to the curvature, curved bridges with subtended angles greater than 30 degrees require explicit modeling of curved geometry. In curved bridges, the coupling of transverse and longitudinal modes reduces the dominance of the fundamental mode in the bridge response and leads to the contribution of higher modes. The statistical evaluation of structural demands indicates that the curvature and the torsion demands on columns are amplified in curved bridges.

Book Application of Bridge Specific Fragility Analysis in the Seismic Design Process of Bridges in California

Download or read book Application of Bridge Specific Fragility Analysis in the Seismic Design Process of Bridges in California written by Jazalyn Denise Dukes and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The California Department of Transportation (Caltrans) seismic bridge design process for an Ordinary Bridge described in the Seismic Design Criteria (SDC) directs the design engineer to meet minimum requirements resulting in the design of a bridge that should remain standing in the event of a Design Seismic Hazard. A bridge can be designed to sustain significant damage; however it should avoid the collapse limit state, where the bridge is unable to resist loads due to self-weight. Seismic hazards, in the form of a design spectrum or ground motion time histories, are used to determine the demands of the bridge components and bridge system. These demands are compared to the capacity of the components to ensure that the bridge meets key performance criteria. The SDC also specifies design detailing of various components, including abutments, foundations, hinge seats and bent caps. The expectation of following the guidelines set forth by the SDC during the design process is that the resulting bridge design will avoid collapse under anticipated seismic loads. While the code provisions provide different analyses to follow and component detailing to adhere to in order to ensure a proper bridge design, the SDC does not provide a way to quantitatively determine whether the bridge design has met the requirement of no-collapse. The objectives of this research are to introduce probabilistic fragility analysis into the Caltrans design process and address the gap of information in the current design process, namely the determination of whether the bridge design meets the performance criteria of no-collapse at the design hazard level. The motivation for this project is to improve the designer's understanding of the probabilistic performance of their bridge design as a function of important design details. To accomplish these goals, a new bridge fragility method is presented as well as a design support tool that provides design engineers with instant access to fragility information during the design process. These products were developed for one specific bridge type that is common in California, the two-span concrete box girder bridge. The end product, the design support tool, is a bridge-specific fragility generator that provides probabilistic performance information on the bridge design. With this tool, a designer can check the bridge design, after going through the SDC design process, to determine the performance of the bridge and its components at any hazard level. The design support tool can provide the user with the probability of failure or collapse for the specific bridge design, which will give insight to the user about whether the bridge design has achieved the performance objective set out in the SDC. The designer would also be able to determine the effect of a change in various design details on the performance and therefore make more informed design decisions.

Book Corrosion of Steel in Concrete

Download or read book Corrosion of Steel in Concrete written by Luca Bertolini and published by John Wiley & Sons. This book was released on 2013-02-26 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: Steel-reinforced concrete is used ubiquitously as a building material due to its unique combination of the high compressive strength of concrete and the high tensile strength of steel. Therefore, reinforced concrete is an ideal composite material that is used for a wide range of applications in structural engineering such as buildings, bridges, tunnels, harbor quays, foundations, tanks and pipes. To ensure durability of these structures, however, measures must be taken to prevent, diagnose and, if necessary, repair damage to the material especially due to corrosion of the steel reinforcement. The book examines the different aspects of corrosion of steel in concrete, starting from basic and essential mechanisms of the phenomenon, moving up to practical consequences for designers, contractors and owners both for new and existing reinforced and prestressed concrete structures. It covers general aspects of corrosion and protection of reinforcement, forms of attack in the presence of carbonation and chlorides, problems of hydrogen embrittlement as well as techniques of diagnosis, monitoring and repair. This second edition updates the contents with recent findings on the different topics considered and bibliographic references, with particular attention to recent European standards. This book is a self-contained treatment for civil and construction engineers, material scientists, advanced students and architects concerned with the design and maintenance of reinforced concrete structures. Readers will benefit from the knowledge, tools, and methods needed to understand corrosion in reinforced concrete and how to prevent it or keep it within acceptable limits.

Book The Seismic Design Handbook

Download or read book The Seismic Design Handbook written by Farzad Naeim and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 816 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook contains up-to-date existing structures, computer applications, and infonnation on planning, analysis, and design seismic design of wood structures. A new and very useful feature of this edition of earthquake-resistant building structures. Its intention is to provide engineers, architects, is the inclusion of a companion CD-ROM disc developers, and students of structural containing the complete digital version of the handbook itself and the following very engineering and architecture with authoritative, yet practical, design infonnation. It represents important publications: an attempt to bridge the persisting gap between l. UBC-IBC (1997-2000) Structural advances in the theories and concepts of Comparisons and Cross References, ICBO, earthquake-resistant design and their 2000. implementation in seismic design practice. 2. NEHRP Guidelines for the Seismic The distinguished panel of contributors is Rehabilitation of Buildings, FEMA-273, Federal Emergency Management Agency, composed of 22 experts from industry and universities, recognized for their knowledge and 1997. extensive practical experience in their fields. 3. NEHRP Commentary on the Guidelinesfor They have aimed to present clearly and the Seismic Rehabilitation of Buildings, FEMA-274, Federal Emergency concisely the basic principles and procedures pertinent to each subject and to illustrate with Management Agency, 1997. practical examples the application of these 4. NEHRP Recommended Provisions for principles and procedures in seismic design Seismic Regulations for New Buildings and practice. Where applicable, the provisions of Older Structures, Part 1 - Provisions, various seismic design standards such as mc FEMA-302, Federal Emergency 2000, UBC-97, FEMA-273/274 and ATC-40 Management Agency, 1997.

Book National Earthquake Resilience

Download or read book National Earthquake Resilience written by National Research Council and published by National Academies Press. This book was released on 2011-09-09 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: The United States will certainly be subject to damaging earthquakes in the future. Some of these earthquakes will occur in highly populated and vulnerable areas. Coping with moderate earthquakes is not a reliable indicator of preparedness for a major earthquake in a populated area. The recent, disastrous, magnitude-9 earthquake that struck northern Japan demonstrates the threat that earthquakes pose. Moreover, the cascading nature of impacts-the earthquake causing a tsunami, cutting electrical power supplies, and stopping the pumps needed to cool nuclear reactors-demonstrates the potential complexity of an earthquake disaster. Such compound disasters can strike any earthquake-prone populated area. National Earthquake Resilience presents a roadmap for increasing our national resilience to earthquakes. The National Earthquake Hazards Reduction Program (NEHRP) is the multi-agency program mandated by Congress to undertake activities to reduce the effects of future earthquakes in the United States. The National Institute of Standards and Technology (NIST)-the lead NEHRP agency-commissioned the National Research Council (NRC) to develop a roadmap for earthquake hazard and risk reduction in the United States that would be based on the goals and objectives for achieving national earthquake resilience described in the 2008 NEHRP Strategic Plan. National Earthquake Resilience does this by assessing the activities and costs that would be required for the nation to achieve earthquake resilience in 20 years. National Earthquake Resilience interprets resilience broadly to incorporate engineering/science (physical), social/economic (behavioral), and institutional (governing) dimensions. Resilience encompasses both pre-disaster preparedness activities and post-disaster response. In combination, these will enhance the robustness of communities in all earthquake-vulnerable regions of our nation so that they can function adequately following damaging earthquakes. While National Earthquake Resilience is written primarily for the NEHRP, it also speaks to a broader audience of policy makers, earth scientists, and emergency managers.