EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Newton Methods for Nonlinear Problems

Download or read book Newton Methods for Nonlinear Problems written by Peter Deuflhard and published by Springer Science & Business Media. This book was released on 2005-01-13 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with the efficient numerical solution of challenging nonlinear problems in science and engineering, both in finite and in infinite dimension. Its focus is on local and global Newton methods for direct problems or Gauss-Newton methods for inverse problems. Lots of numerical illustrations, comparison tables, and exercises make the text useful in computational mathematics classes. At the same time, the book opens many directions for possible future research.

Book Solving Nonlinear Equations with Newton s Method

Download or read book Solving Nonlinear Equations with Newton s Method written by C. T. Kelley and published by SIAM. This book was released on 2003-01-01 with total page 117 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book on Newton's method is a user-oriented guide to algorithms and implementation. In just over 100 pages, it shows, via algorithms in pseudocode, in MATLAB, and with several examples, how one can choose an appropriate Newton-type method for a given problem, diagnose problems, and write an efficient solver or apply one written by others. It contains trouble-shooting guides to the major algorithms, their most common failure modes, and the likely causes of failure. It also includes many worked-out examples (available on the SIAM website) in pseudocode and a collection of MATLAB codes, allowing readers to experiment with the algorithms easily and implement them in other languages.

Book Newton Methods for Nonlinear Problems

Download or read book Newton Methods for Nonlinear Problems written by Peter Deuflhard and published by Springer Science & Business Media. This book was released on 2011-09-18 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with the efficient numerical solution of challenging nonlinear problems in science and engineering, both in finite dimension (algebraic systems) and in infinite dimension (ordinary and partial differential equations). Its focus is on local and global Newton methods for direct problems or Gauss-Newton methods for inverse problems. The term 'affine invariance' means that the presented algorithms and their convergence analysis are invariant under one out of four subclasses of affine transformations of the problem to be solved. Compared to traditional textbooks, the distinguishing affine invariance approach leads to shorter theorems and proofs and permits the construction of fully adaptive algorithms. Lots of numerical illustrations, comparison tables, and exercises make the text useful in computational mathematics classes. At the same time, the book opens many directions for possible future research.

Book Numerical Methods for Unconstrained Optimization and Nonlinear Equations

Download or read book Numerical Methods for Unconstrained Optimization and Nonlinear Equations written by J. E. Dennis, Jr. and published by SIAM. This book was released on 1996-12-01 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has become the standard for a complete, state-of-the-art description of the methods for unconstrained optimization and systems of nonlinear equations. Originally published in 1983, it provides information needed to understand both the theory and the practice of these methods and provides pseudocode for the problems. The algorithms covered are all based on Newton's method or "quasi-Newton" methods, and the heart of the book is the material on computational methods for multidimensional unconstrained optimization and nonlinear equation problems. The republication of this book by SIAM is driven by a continuing demand for specific and sound advice on how to solve real problems. The level of presentation is consistent throughout, with a good mix of examples and theory, making it a valuable text at both the graduate and undergraduate level. It has been praised as excellent for courses with approximately the same name as the book title and would also be useful as a supplemental text for a nonlinear programming or a numerical analysis course. Many exercises are provided to illustrate and develop the ideas in the text. A large appendix provides a mechanism for class projects and a reference for readers who want the details of the algorithms. Practitioners may use this book for self-study and reference. For complete understanding, readers should have a background in calculus and linear algebra. The book does contain background material in multivariable calculus and numerical linear algebra.

Book Iterative Methods for Linear and Nonlinear Equations

Download or read book Iterative Methods for Linear and Nonlinear Equations written by C. T. Kelley and published by SIAM. This book was released on 1995-01-01 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear and nonlinear systems of equations are the basis for many, if not most, of the models of phenomena in science and engineering, and their efficient numerical solution is critical to progress in these areas. This is the first book to be published on nonlinear equations since the mid-1980s. Although it stresses recent developments in this area, such as Newton-Krylov methods, considerable material on linear equations has been incorporated. This book focuses on a small number of methods and treats them in depth. The author provides a complete analysis of the conjugate gradient and generalized minimum residual iterations as well as recent advances including Newton-Krylov methods, incorporation of inexactness and noise into the analysis, new proofs and implementations of Broyden's method, and globalization of inexact Newton methods. Examples, methods, and algorithmic choices are based on applications to infinite dimensional problems such as partial differential equations and integral equations. The analysis and proof techniques are constructed with the infinite dimensional setting in mind and the computational examples and exercises are based on the MATLAB environment.

Book Newton Methods for Nonlinear Problems

Download or read book Newton Methods for Nonlinear Problems written by Peter Deuflhard and published by Springer. This book was released on 2016-09-11 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces

Download or read book Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces written by Michael Ulbrich and published by SIAM. This book was released on 2011-07-28 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive treatment of semismooth Newton methods in function spaces: from their foundations to recent progress in the field. This book is appropriate for researchers and practitioners in PDE-constrained optimization, nonlinear optimization and numerical analysis, as well as engineers interested in the current theory and methods for solving variational inequalities.

Book New Developments of Newton Type Iterations for Solving Nonlinear Problems

Download or read book New Developments of Newton Type Iterations for Solving Nonlinear Problems written by Tugal Zhanlav and published by Springer Nature. This book was released on with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Finite Difference Computing with PDEs

Download or read book Finite Difference Computing with PDEs written by Hans Petter Langtangen and published by Springer. This book was released on 2017-06-21 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is open access under a CC BY 4.0 license. This easy-to-read book introduces the basics of solving partial differential equations by means of finite difference methods. Unlike many of the traditional academic works on the topic, this book was written for practitioners. Accordingly, it especially addresses: the construction of finite difference schemes, formulation and implementation of algorithms, verification of implementations, analyses of physical behavior as implied by the numerical solutions, and how to apply the methods and software to solve problems in the fields of physics and biology.

Book Methods in Nonlinear Integral Equations

Download or read book Methods in Nonlinear Integral Equations written by R Precup and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: Methods in Nonlinear Integral Equations presents several extremely fruitful methods for the analysis of systems and nonlinear integral equations. They include: fixed point methods (the Schauder and Leray-Schauder principles), variational methods (direct variational methods and mountain pass theorems), and iterative methods (the discrete continuation principle, upper and lower solutions techniques, Newton's method and the generalized quasilinearization method). Many important applications for several classes of integral equations and, in particular, for initial and boundary value problems, are presented to complement the theory. Special attention is paid to the existence and localization of solutions in bounded domains such as balls and order intervals. The presentation is essentially self-contained and leads the reader from classical concepts to current ideas and methods of nonlinear analysis.

Book Iterative Methods for Solving Nonlinear Equations and Systems

Download or read book Iterative Methods for Solving Nonlinear Equations and Systems written by Juan R. Torregrosa and published by MDPI. This book was released on 2019-12-06 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solving nonlinear equations in Banach spaces (real or complex nonlinear equations, nonlinear systems, and nonlinear matrix equations, among others), is a non-trivial task that involves many areas of science and technology. Usually the solution is not directly affordable and require an approach using iterative algorithms. This Special Issue focuses mainly on the design, analysis of convergence, and stability of new schemes for solving nonlinear problems and their application to practical problems. Included papers study the following topics: Methods for finding simple or multiple roots either with or without derivatives, iterative methods for approximating different generalized inverses, real or complex dynamics associated to the rational functions resulting from the application of an iterative method on a polynomial. Additionally, the analysis of the convergence has been carried out by means of different sufficient conditions assuring the local, semilocal, or global convergence. This Special issue has allowed us to present the latest research results in the area of iterative processes for solving nonlinear equations as well as systems and matrix equations. In addition to the theoretical papers, several manuscripts on signal processing, nonlinear integral equations, or partial differential equations, reveal the connection between iterative methods and other branches of science and engineering.

Book Reformulation  Nonsmooth  Piecewise Smooth  Semismooth and Smoothing Methods

Download or read book Reformulation Nonsmooth Piecewise Smooth Semismooth and Smoothing Methods written by Masao Fukushima and published by Springer Science & Business Media. This book was released on 1999 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: The concept of `reformulation' has long played an important role in mathematical programming. A classical example is the penalization technique in constrained optimization. More recent trends consist of reformulation of various mathematical programming problems, including variational inequalities and complementarity problems, into equivalent systems of possibly nonsmooth, piecewise smooth or semismooth nonlinear equations, or equivalent unconstrained optimization problems that are usually differentiable, but in general not twice differentiable. The book is a collection of peer-reviewed papers that cover such diverse areas as linear and nonlinear complementarity problems, variational inequality problems, nonsmooth equations and nonsmooth optimization problems, economic and network equilibrium problems, semidefinite programming problems, maximal monotone operator problems, and mathematical programs with equilibrium constraints. The reader will be convinced that the concept of `reformulation' provides extremely useful tools for advancing the study of mathematical programming from both theoretical and practical aspects. Audience: This book is intended for students and researchers in optimization, mathematical programming, and operations research.

Book Programming for Computations   MATLAB Octave

Download or read book Programming for Computations MATLAB Octave written by Svein Linge and published by Springer. This book was released on 2016-08-01 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents computer programming as a key method for solving mathematical problems. There are two versions of the book, one for MATLAB and one for Python. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows the students to write simple programs for solving common mathematical problems with numerical methods in engineering and science courses. The emphasis is on generic algorithms, clean design of programs, use of functions, and automatic tests for verification.

Book Principles of Numerical Analysis

Download or read book Principles of Numerical Analysis written by Alston S. Householder and published by Courier Corporation. This book was released on 2006-01-01 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer science rests upon the building blocks of numerical analysis. This concise treatment by an expert covers the essentials of the solution of finite systems of linear and nonlinear equations as well as the approximate representation of functions. A final section provides 54 problems, subdivided according to chapter. 1953 edition.

Book Numerical Methods for Nonlinear Engineering Models

Download or read book Numerical Methods for Nonlinear Engineering Models written by John R. Hauser and published by Springer Science & Business Media. This book was released on 2009-03-24 with total page 1013 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are many books on the use of numerical methods for solving engineering problems and for modeling of engineering artifacts. In addition there are many styles of such presentations ranging from books with a major emphasis on theory to books with an emphasis on applications. The purpose of this book is hopefully to present a somewhat different approach to the use of numerical methods for - gineering applications. Engineering models are in general nonlinear models where the response of some appropriate engineering variable depends in a nonlinear manner on the - plication of some independent parameter. It is certainly true that for many types of engineering models it is sufficient to approximate the real physical world by some linear model. However, when engineering environments are pushed to - treme conditions, nonlinear effects are always encountered. It is also such - treme conditions that are of major importance in determining the reliability or failure limits of engineering systems. Hence it is essential than engineers have a toolbox of modeling techniques that can be used to model nonlinear engineering systems. Such a set of basic numerical methods is the topic of this book. For each subject area treated, nonlinear models are incorporated into the discussion from the very beginning and linear models are simply treated as special cases of more general nonlinear models. This is a basic and fundamental difference in this book from most books on numerical methods.

Book Numerical Methods for Unconstrained Optimization and Nonlinear Equations

Download or read book Numerical Methods for Unconstrained Optimization and Nonlinear Equations written by J. E. Dennis, Jr. and published by SIAM. This book was released on 1996-12-01 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: A complete, state-of-the-art description of the methods for unconstrained optimization and systems of nonlinear equations.

Book Programming for Computations   Python

Download or read book Programming for Computations Python written by Svein Linge and published by Springer. This book was released on 2016-07-25 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents computer programming as a key method for solving mathematical problems. There are two versions of the book, one for MATLAB and one for Python. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows the students to write simple programs for solving common mathematical problems with numerical methods in engineering and science courses. The emphasis is on generic algorithms, clean design of programs, use of functions, and automatic tests for verification.