EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book New Regimes of Amplification of Vacuum Fluctuations in Optomechanics  Dynamical Casimir Effect and Deep Strong Coupling

Download or read book New Regimes of Amplification of Vacuum Fluctuations in Optomechanics Dynamical Casimir Effect and Deep Strong Coupling written by Belter Ernesto Ordaz Mendoza and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Vacuum fluctuations of the electromagnetic field are a direct manifestation of quantum effects. The dynamical Casimir effect (DCE) is the production of photons by the amplification of vacuum fluctuations. In this work we demonstrate new resonance conditions in DCE that potentially allow the production of optical photons when the mechanical frequency is smaller than the lowest frequency of the cavity field. We consider a cavity with one mirror fixed and the other allowed to oscillate. In order to identify the region where production of photons takes place, we do a linear stability analysis and investigate the dynamic stability of the system under small fluctuations. By using a numerical solution of the Heisenberg equations of motion, the time evolution of the number of photons produced in the unstable region is studied. Additionally, by using a fully quantized scheme, we investigate the coupling of the two degrees of freedom starting with no photons and phonons, and analyze amplification of vacuum fluctuations of both the cavity field and the mirror's motion. We study the optomechanical configuration in the deep strong coupling regime, where the single--photon coupling rate is on the same order of magnitude as the cavity frequency. The time evolution of the average number of photons and phonons is treated using the Heisenberg-Langevin formalism.

Book Optomechanics with Quantum Vacuum Fluctuations

Download or read book Optomechanics with Quantum Vacuum Fluctuations written by Zhujing Xu and published by Springer. This book was released on 2023-11-23 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents the first realization of non-reciprocal energy transfer between two cantilevers by quantum vacuum fluctuations. According to quantum mechanics, vacuum is not empty but full of fluctuations due to zero-point energy. Such quantum vacuum fluctuations can lead to an attractive force between two neutral plates in vacuum – the so-called Casimir effect – which has attracted great attention as macroscopic evidence of quantum electromagnetic fluctuations, and can dominate the interaction between neutral surfaces at small separations. The first experimental demonstration of diode-like energy transport in vacuum reported in this thesis is a breakthrough in Casimir-based devices. It represents an efficient and robust way of regulating phonon transport along one preferable direction in vacuum. In addition, the three-body Casimir effects investigated in this thesis were used to realize a transistor-like three-terminal device with quantum vacuum fluctuations. These two breakthroughs pave the way for exploring and developing advanced Casimir-based devices with potential applications in quantum information science. This thesis also includes a study of the non-contact Casimir friction, which will enrich the understanding of quantum vacuum fluctuations.

Book Quantum Opto Mechanics with Micromirrors

Download or read book Quantum Opto Mechanics with Micromirrors written by Simon Gröblacher and published by Springer Science & Business Media. This book was released on 2012-12-16 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum effects in macroscopic systems have long been a fascination for researchers. Over the past decade mechanical oscillators have emerged as a leading system of choice for many such experiments. The work reported in this thesis investigates the effects of the radiation-pressure force of light on macroscopic mechanical structures. The basic system studied is a mechanical oscillator that is highly reflective and part of an optical resonator. It interacts with the optical cavity mode via the radiation-pressure force. Both the dynamics of the mechanical oscillation and the properties of the light field are modified through this interaction. The experiments use quantum optical tools (such as homodyning and down-conversion) with the goal of ultimately showing quantum behavior of the mechanical center of mass motion. Of particular value are the detailed descriptions of several novel experiments that pave the way towards this goal and are already shaping the field of quantum optomechanics, in particular optomechanical laser cooling and strong optomechanical coupling.

Book Quantum Optomechanics and Nanomechanics

Download or read book Quantum Optomechanics and Nanomechanics written by Pierre-François Cohadon and published by Oxford University Press. This book was released on 2020-03-05 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Les Houches Summer School in August 2015 covered the emerging fields of cavity optomechanics and quantum nanomechanics. Optomechanics is flourishing and its concepts and techniques are now applied to a wide range of topics. Modern quantum optomechanics was born in the late 1970s in the framework of gravitational wave interferometry, with an initial focus on the quantum limits of displacement measurements. Carlton Caves, Vladimir Braginsky, and others realized that the sensitivity of the anticipated large-scale gravitational-wave interferometers (GWI) was fundamentally limited by the quantum fluctuations of the measurement laser beam. After tremendous experimental progress, the sensitivity of the upcoming next generation of GWI will effectively be limited by quantum noise. In this way, quantum-optomechanical effects will directly affect the operation of what is arguably the world's most impressive precision experiment. However, optomechanics has also gained a life of its own with a focus on the quantum aspects of moving mirrors. Laser light can be used to cool mechanical resonators well below the temperature of its environment. After proof-of-principle demonstrations of this cooling in 2006, a number of systems were used as the field gradually merged with its condensed matter cousin (nanomechanical systems) to try to reach the mechanical quantum ground state, eventually demonstrated in 2010 by pure cryogenic techniques and just one year later by a combination of cryogenic and radiation-pressure cooling. The book covers all aspects — historical, theoretical, experimental — of the field, with its applications to quantum measurement, foundations of quantum mechanics and quantum information. It is an essential read for any new researcher in the field.

Book Quantum Optomechanics

    Book Details:
  • Author : Warwick P. Bowen
  • Publisher : CRC Press
  • Release : 2015-11-18
  • ISBN : 1482259168
  • Pages : 375 pages

Download or read book Quantum Optomechanics written by Warwick P. Bowen and published by CRC Press. This book was released on 2015-11-18 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by leading experimentalist Warwick P. Bowen and prominent theoretician Gerard J. Milburn, Quantum Optomechanics discusses modern developments in this novel field from experimental and theoretical standpoints. The authors share their insight on a range of important topics, including optomechanical cooling and entanglement; quantum limits on

Book Novel Regimes of Quantum Optomechanics

Download or read book Novel Regimes of Quantum Optomechanics written by Lukas Neumeier and published by . This book was released on 2018 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: In everyday life the impact of light on the motion of mechanical objects is negligible. However, modern experiments making use of high quality optical resonators are able to observe significant effects originating from the forces associated with photons on small mechanical systems. The common feature of these systems is the dependence of the optical resonance frequency on the position of the mechanical object, laying the framework of optomechanics. Many interesting regimes have been explored which allow for photon-light entanglement, laser cooling of motion, generation of squeezed states of light, and even the detection of gravitational waves. Interestingly, the optomechanical interaction is so generic that its underlying concepts and derived insights can be generally applied to a large variety of systems, as we will see in this thesis. In Chapter 1, we provide a brief overview of key concepts and results from the field of optomechanics, before going on to discuss the novel regimes and applications that we have identified and proposed. In Chapter 2, we theoretically investigate results from a couple of experiments, that were previously not well-understood. These experiments trap dielectric nano-particles through an optical resonator mode and observe that the intensities experienced by the particles are strongly reduced compared to a conventional optical tweezer trap. We find that these systems can be fully described by a simple optomechanical toy model and derive that the optical potential inside resonators can approach a nearly perfect square well. This potential can be dynamically reshaped by changing the driving laser frequency and we find a dramatic reduction of intensities seen by the trapped particle, which could significantly increase the range of systems to which optical trapping can be applied. These results are quite remarkable and should have important implications for future trapping technologies. In Chapter 3, we recognize that a major trend within the field of cavity QED is to attain the strong coupling regime. Additional rich dynamics can occur by considering the atomic motional degree of freedom. In particular, we show that such a system is a natural candidate to explore the single-photon optomechanical strong coupling regime of quantum optomechanics, but where the motional frequency cannot be resolved by the cavity. We show that this regime can result in a number of remarkable phenomena, such as strong entanglement between the atomic wave-function and the scattering properties of single incident photons, or an anomalous heating mechanism of atomic motion. In Chapter 4 we show that an atom trapped in and coupled to a cavity constitutes an attractive platform for realizing the optomechanical single-photon strong coupling regime with resolved mechanical sidebands. Realizing this regime is a major goal within the field of optomechanics, as it would enable the deterministic generation of non-classical states of light. However, this regime is difficult to achieve with conventional mechanical systems due to their small zero-point motions. As an example, we show that optomechanically-induced photon blockade can be realized in realistic setups, wherein non-classical light is generated due to the interaction of photons with the atomic motion alone.

Book Theory of Quantum Optomechanics with Unconventional Nonlinear Coupling Schemes

Download or read book Theory of Quantum Optomechanics with Unconventional Nonlinear Coupling Schemes written by Juan Sebastián Restrepo and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Cavity quantum electrodynamics in the optical domain

Download or read book Cavity quantum electrodynamics in the optical domain written by Robert James Thompson and published by . This book was released on 1994 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Condensed Matter Field Theory

Download or read book Condensed Matter Field Theory written by Alexander Altland and published by Cambridge University Press. This book was released on 2010-03-11 with total page 785 pages. Available in PDF, EPUB and Kindle. Book excerpt: This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.

Book Exploring the Quantum

    Book Details:
  • Author : Serge Haroche
  • Publisher : OUP Oxford
  • Release : 2006-08-11
  • ISBN : 0191523240
  • Pages : 616 pages

Download or read book Exploring the Quantum written by Serge Haroche and published by OUP Oxford. This book was released on 2006-08-11 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: The counter-intuitive aspects of quantum physics have been long illustrated by thought experiments, from Einstein's photon box to Schrödinger's cat. These experiments have now become real, with single particles - electrons, atoms, or photons - directly unveiling the strange features of the quantum. State superpositions, entanglement and complementarity define a novel quantum logic which can be harnessed for information processing, raising great hopes for applications. This book describes a class of such thought experiments made real. Juggling with atoms and photons confined in cavities, ions or cold atoms in traps, is here an incentive to shed a new light on the basic concepts of quantum physics. Measurement processes and decoherence at the quantum-classical boundary are highlighted. This volume, which combines theory and experiments, will be of interest to students in quantum physics, teachers seeking illustrations for their lectures and new problem sets, researchers in quantum optics and quantum information.

Book Modern Condensed Matter Physics

Download or read book Modern Condensed Matter Physics written by Steven M. Girvin and published by Cambridge University Press. This book was released on 2019-02-28 with total page 720 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive and accessible coverage from the basics to advanced topics in modern quantum condensed matter physics.

Book Analogue Gravity Phenomenology

Download or read book Analogue Gravity Phenomenology written by Daniele Faccio and published by Springer. This book was released on 2013-08-13 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analogue Gravity Phenomenology is a collection of contributions that cover a vast range of areas in physics, ranging from surface wave propagation in fluids to nonlinear optics. The underlying common aspect of all these topics, and hence the main focus and perspective from which they are explained here, is the attempt to develop analogue models for gravitational systems. The original and main motivation of the field is the verification and study of Hawking radiation from a horizon: the enabling feature is the possibility to generate horizons in the laboratory with a wide range of physical systems that involve a flow of one kind or another. The years around 2010 and onwards witnessed a sudden surge of experimental activity in this expanding field of research. However, building an expertise in analogue gravity requires the researcher to be equipped with a rather broad range of knowledge and interests. The aim of this book is to bring the reader up to date with the latest developments and provide the basic background required in order to appreciate the goals, difficulties, and success stories in the field of analogue gravity. Each chapter of the book treats a different topic explained in detail by the major experts for each specific discipline. The first chapters give an overview of black hole spacetimes and Hawking radiation before moving on to describe the large variety of analogue spacetimes that have been proposed and are currently under investigation. This introductory part is then followed by an in-depth description of what are currently the three most promising analogue spacetime settings, namely surface waves in flowing fluids, acoustic oscillations in Bose-Einstein condensates and electromagnetic waves in nonlinear optics. Both theory and experimental endeavours are explained in detail. The final chapters refer to other aspects of analogue gravity beyond the study of Hawking radiation, such as Lorentz invariance violations and Brownian motion in curved spacetimes, before concluding with a return to the origins of the field and a description of the available observational evidence for horizons in astrophysical black holes.

Book Cavity Optomechanics

    Book Details:
  • Author : Markus Aspelmeyer
  • Publisher : Springer
  • Release : 2014-07-05
  • ISBN : 3642553125
  • Pages : 358 pages

Download or read book Cavity Optomechanics written by Markus Aspelmeyer and published by Springer. This book was released on 2014-07-05 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the last few years cavity-optomechanics has emerged as a new field of research. This highly interdisciplinary field studies the interaction between micro and nano mechanical systems and light. Possible applications range from novel high-bandwidth mechanical sensing devices through the generation of squeezed optical or mechanical states to even tests of quantum theory itself. This is one of the first books in this relatively young field. It is aimed at scientists, engineers and students who want to obtain a concise introduction to the state of the art in the field of cavity optomechanics. It is valuable to researchers in nano science, quantum optics, quantum information, gravitational wave detection and other cutting edge fields. Possible applications include biological sensing, frequency comb applications, silicon photonics etc. The technical content will be accessible to those who have familiarity with basic undergraduate physics.

Book Polariton Chemistry

    Book Details:
  • Author : Joel Yuen-Zhou
  • Publisher :
  • Release : 2023-05-09
  • ISBN : 9781119783299
  • Pages : 452 pages

Download or read book Polariton Chemistry written by Joel Yuen-Zhou and published by . This book was released on 2023-05-09 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a pedagogical introduction to the emerging field of Polariton Chemistry, where optical cavities are utilized to control the physicochemical properties and dynamics of molecular systems. Given the early stages of this interdisciplinary research area, it is important to provide a common language and starting point for interested researchers across Chemistry, Physics, and Engineering This edited compendium fills a void given that there is currently no analogue in the current literature. Topics covered include Single-Molecule Strong Light-Matter Coupling; Collective Strong Light-Matter Coupling; and Ultrastrong Light-Matter Coupling

Book Quantum Machines  Measurement and Control of Engineered Quantum Systems

Download or read book Quantum Machines Measurement and Control of Engineered Quantum Systems written by Michel Devoret and published by OUP Oxford. This book was released on 2014-06-12 with total page 601 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers the lecture notes of courses given at the 2011 summer school in theoretical physics in Les Houches, France, Session XCVI. What is a quantum machine? Can we say that lasers and transistors are quantum machines? After all, physicists advertise these devices as the two main spin-offs of the understanding of quantum mechanical phenomena. However, while quantum mechanics must be used to predict the wavelength of a laser and the operation voltage of a transistor, it does not intervene at the level of the signals processed by these systems. Signals involve macroscopic collective variables like voltages and currents in a circuit or the amplitude of the oscillating electric field in an electromagnetic cavity resonator. In a true quantum machine, the signal collective variables, which both inform the outside on the state of the machine and receive controlling instructions, must themselves be treated as quantum operators, just as the position of the electron in a hydrogen atom. Quantum superconducting circuits, quantum dots, and quantum nanomechanical resonators satisfy the definition of quantum machines. These mesoscopic systems exhibit a few collective dynamical variables, whose fluctuations are well in the quantum regime and whose measurement is essentially limited in precision by the Heisenberg uncertainty principle. Other engineered quantum systems based on natural, rather than artificial degrees of freedom can also qualify as quantum machines: trapped ions, single Rydberg atoms in superconducting cavities, and lattices of ultracold atoms. This book provides the basic knowledge needed to understand and investigate the physics of these novel systems.

Book A Guide to Experiments in Quantum Optics

Download or read book A Guide to Experiments in Quantum Optics written by Hans-A. Bachor and published by John Wiley & Sons. This book was released on 2019-10-28 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides fully updated coverage of new experiments in quantum optics This fully revised and expanded edition of a well-established textbook on experiments on quantum optics covers new concepts, results, procedures, and developments in state-of-the-art experiments. It starts with the basic building blocks and ideas of quantum optics, then moves on to detailed procedures and new techniques for each experiment. Focusing on metrology, communications, and quantum logic, this new edition also places more emphasis on single photon technology and hybrid detection. In addition, it offers end-of-chapter summaries and full problem sets throughout. Beginning with an introduction to the subject, A Guide to Experiments in Quantum Optics, 3rd Edition presents readers with chapters on classical models of light, photons, quantum models of light, as well as basic optical components. It goes on to give readers full coverage of lasers and amplifiers, and examines numerous photodetection techniques being used today. Other chapters examine quantum noise, squeezing experiments, the application of squeezed light, and fundamental tests of quantum mechanics. The book finishes with a section on quantum information before summarizing of the contents and offering an outlook on the future of the field. -Provides all new updates to the field of quantum optics, covering the building blocks, models and concepts, latest results, detailed procedures, and modern experiments -Places emphasis on three major goals: metrology, communications, and quantum logic -Presents fundamental tests of quantum mechanics (Schrodinger Kitten, multimode entanglement, photon systems as quantum emulators), and introduces the density function -Includes new trends and technologies in quantum optics and photodetection, new results in sensing and metrology, and more coverage of quantum gates and logic, cluster states, waveguides for multimodes, discord and other quantum measures, and quantum control -Offers end of chapter summaries and problem sets as new features A Guide to Experiments in Quantum Optics, 3rd Edition is an ideal book for professionals, and graduate and upper level students in physics and engineering science.