EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book New Regime of Thomson Scattering

Download or read book New Regime of Thomson Scattering written by and published by . This book was released on 2000 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In this paper the authors demonstrate through calculations and theoretical analysis the first application of a x-ray laser for probing hot, high-density plasmas (n{sub e} ≥ 1023 cm−3) using a Ni-like transient collisional excitation x-ray laser as a probe. Theoretical predictions are used to diagnose the electron temperature in short pulse (500 fs) laser produced plasmas. The threshold power of the x-ray probe is estimated by comparing theoretical scattering levels with plasma thermal emission. The necessary spectral resolution of the instrument sufficient for resolving electron temperature is given.

Book X ray Thomson Scattering from Dense Plasmas

Download or read book X ray Thomson Scattering from Dense Plasmas written by and published by . This book was released on 2007 with total page 4 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in the development of laser-produced x-ray sources have enabled a new class of high-energy density physics experiments. Powerful narrow-bandwidth x rays penetrate through short-lived hot dense states of matter and probe the physical properties with spectrally resolved x-ray scattering. Experiments from isochorically-heated plasmas with electron densities in the range of solid density and above have been demonstrated allowing for the first time exploration of the microscopic properties of dense matter regime close to strongly-coupled and Fermi degenerate conditions. Backscatter measurements have accessed the non-collective Compton scattering regime, which provides accurate diagnostic information on the temperature, density and ionization states. The forward scattering spectrum has been shown to measure the collective plasmon oscillations. Besides extracting the standard plasma parameters, density and temperature, forward scattering yields new observables such as a direct measure of collisions, quantum effects and detailed balance. In this talk, we will discuss new results important for applications of this technique for novel experiments in a wide range of research areas such as inertial confinement fusion, radiation-hydrodynamics, material science, and laboratory astrophysics.

Book Using X ray Thomson Scattering to Measure Plasma Conditions in Warm Dense Matter Experiments on the OMEGA Laser

Download or read book Using X ray Thomson Scattering to Measure Plasma Conditions in Warm Dense Matter Experiments on the OMEGA Laser written by Alison Marie-Anne Saunders and published by . This book was released on 2018 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt: High energy density physics (HEDP) is an emerging field that seeks to investigate the properties of matter at extreme conditions. High energy density conditions occur in materials with pressures exceeding 1 Mbar, or pressures that exceed Earth’s atmospheric pressure by a factor of more than a million. A regime of HEDP of particular interest is warm dense matter (WDM) physics, which describes the behavior of materials at near solid densities and 10’s of eV temperatures. WDM occurs in astrophysical objects, such as giant planets and brown dwarfs, and is also generated in inertial confinement fusion (ICF) experiments. X-ray Thomson scattering (XRTS) offers a powerful tool to probe the equation of state of WDM. XRTS spectra consist of two components: elastically scattered photons with the frequency of the original x-ray source and inelastically scattered photons that are down- shifted in frequency. The Compton-shifted profile of inelastically scattered x-rays can be analyzed to return the sample’s electron density and electron temperature. The ratio of elastically to inelastically scattered x-rays relates to the number of tightly bound versus free electrons, and thus reflects the ionization state. This thesis discusses the results of XRTS experiments on WDM performed at the OMEGA Laser facility. The first experiment presents and discusses XRTS results from 1 mm diamond spheres. The scattering spectra show evidence of higher ionization than predicted by several commonly-applied ionization models. A second experiment analyzed the contributions to elastic scattering from a small argon impurity in imploding beryllium capsules. The exper- iment found that less than 1 at.% of argon significantly affects the elastic scattering signal strength, and concluded that impurities in a sample should be considered before drawing conclusions from elastic scattering signals. The final experiment uses XRTS to measure the electron temperature and ionization state in isochorically heated materials used in ion stopping power experiments. The results from these experiments demonstrate the power of XRTS to measure ionization in WDM to benchmark theoretical modeling.

Book Soft X Ray Thomson Scattering in Warm Dense Hydrogen at FLASH

Download or read book Soft X Ray Thomson Scattering in Warm Dense Hydrogen at FLASH written by and published by . This book was released on 2009 with total page 11 pages. Available in PDF, EPUB and Kindle. Book excerpt: We present collective Thomson scattering with soft x-ray free electron laser radiation as a method to track the evolution of warm dense matter plasmas with ≈200 fs time resolution. In a pump-probe scheme an 800 nm laser heats a 20 [mu]m hydrogen droplet to the plasma state. After a variable time delay in the order of ps the plasma is probed by an x-ray ultra violet (XUV) pulse which scatters from the target and is recorded spectrally. Alternatively, in a self-Thomson scattering experiment, a single XUV pulse heats the target while a portion of its photons are being scattered probing the target. From such inelastic x-ray scattering spectra free electron temperature and density can be inferred giving insight on relaxation time scales in plasmas as well as the equation of state. We prove the feasibility of this method in the XUV range utilizing the free electron laser facility in Hamburg, FLASH. We recorded Thomson scattering spectra for hydrogen plasma, both in the self-scattering and in the pump-probe mode using optical laser heating.

Book Plasma Based Studies on 4th Generation Light Sources

Download or read book Plasma Based Studies on 4th Generation Light Sources written by and published by . This book was released on 2000 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The construction of a short pulse tunable x-ray laser source will be a watershed for plasma-based and warm dense matter research. The areas we will discuss below can be separated broadly into warn dense matter (WDM) research, laser probing of near solid density plasmas, and laser-plasma spectroscopy of ions in plasmas. The area of WDM refers to that part of the density-temperature phase space where the standard theories of condensed matter physics and/or plasma statistical physics are invalid. Warm dense matter, therefore, defines a region between solids and plasmas, a regime that is found in planetary interiors, cool dense stars, and in every plasma device where one starts from a solid, e.g., laser-solid matter produced plasma as well as all inertial fusion schemes. The study of dense plasmas has been severely hampered by the fact that laser-based methods have been unavailable. The single most useful diagnostic of local plasma conditions, e.g., the temperature (T{sub e}), the density (n{sub e}), and the ionization (Z), has been Thomson scattering. However, due to the fact that visible light will not propagate at electron densities, n{sub e}, ≥ 1022 cm−3 implies dense plasmas can not be probed. The 4th generation sources, LCLS and Tesla will remove these restrictions. Laser-based plasma spectroscopic techniques have been used with great success to determine the line shapes of atomic transitions in plasmas, study the population kinetics of atomic systems embedded in plasmas, and look at redistribution of radiation. However. the possibilities end for plasmas with n{sub e} ≥ 1022 since light propagation through the medium is severely altered by the plasma. The entire field of high Z plasma kinetics from laser produced plasma will then be available to study with the tunable source.

Book Laser Plasma Interactions

Download or read book Laser Plasma Interactions written by Dino A. Jaroszynski and published by CRC Press. This book was released on 2009-03-27 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Solid Compendium of Advanced Diagnostic and Simulation ToolsExploring the most exciting and topical areas in this field, Laser-Plasma Interactions focuses on the interaction of intense laser radiation with plasma. After discussing the basic theory of the interaction of intense electromagnetic radiation fields with matter, the book covers three ap

Book Warm  Dense Plasma Characterization by X ray Thomson Scattering

Download or read book Warm Dense Plasma Characterization by X ray Thomson Scattering written by and published by . This book was released on 2000 with total page 8 pages. Available in PDF, EPUB and Kindle. Book excerpt: We describe how the powerful technique of spectrally resolved Thomson scattering can be extended to the x-ray regime, for direct measurements of the ionization state, density, temperature, and the microscopic behavior of dense cool plasmas. Such a direct measurement of microscopic parameters of solid density plasmas could eventually be used to properly interpret laboratory measurements of material properties such as thermal and electrical conductivity, EUS and opacity. In addition, x-ray Thomson scattering will provide new information on the characteristics of rarely and hitherto difficult to diagnose Fermi degenerate and strongly coupled plasmas.

Book Thomson Scattering from Laser Plasmas

Download or read book Thomson Scattering from Laser Plasmas written by and published by . This book was released on 1999 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Thomson scattering has recently been introduced as a fundamental diagnostic of plasma conditions and basic physical processes in dense, inertial confinement fusion plasmas. Experiments at the Nova laser facility [E.M. Campbell et al., Laser Part. Beams 9, 209 (1991)] have demonstrated accurate temporally and spatially resolved characterization of densities, electron temperatures, and average ionization levels by simultaneously observing Thomson scattered light from ion acoustic and electron plasma (Langmuir) fluctuations. In addition, observations of fast and slow ion acous- tic waves in two-ion species plasmas have also allowed an independent measurement of the ion temperature. These results have motivated the application of Thomson scattering in closed-geometry inertial confinement fusion hohlraums to benchmark integrated radiation-hydrodynamic modeling of fusion plasmas. For this purpose a high energy 4[omega] probe laser was implemented recently allowing ultraviolet Thomson scattering at various locations in high-density gas-filled hohlraum plasmas. In partic- ular, the observation of steep electron temperature gradients indicates that electron thermal transport is inhibited in these gas-filled hohlraums. Hydrodynamic calcula- tions which include an exact treatment of large-scale magnetic fields are in agreement with these findings. Moreover, the Thomson scattering data clearly indicate axial stagnation in these hohlraums by showing a fast rise of the ion temperature. Its timing is in good agreement with calculations indicating that the stagnating plasma will not deteriorate the implosion of the fusion capsules in ignition experiments.

Book X ray Emission from Colliding Laser Plasmas

Download or read book X ray Emission from Colliding Laser Plasmas written by and published by . This book was released on 1995 with total page 15 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book 21nm X ray Laser Thomson Scattering of Laser heated Exploding Foil Plasmas

Download or read book 21nm X ray Laser Thomson Scattering of Laser heated Exploding Foil Plasmas written by and published by . This book was released on 2007 with total page 10 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent experiments were carried out on the Prague Asterix Laser System (PALS) towards the demonstration of a soft x-ray laser Thomson scattering diagnostic for a laser-produced exploding foil. The Thomson probe utilized the Ne-like zinc x-ray laser which was double-passed to deliver ≈1 mJ of focused energy at 21.2 nm wavelength and lasting ≈100 ps. The plasma under study was heated single-sided using a Gaussian 300-ps pulse of 438-nm light (3[omega] of the PALS iodine laser) at laser irradiances of 1013-1014 W cm−2. Electron densities of 102°-1022 cm−3 and electron temperatures from 200 to 500 eV were probed at 0.5 or 1 ns after the peak of the heating pulse during the foil plasma expansion. A flat-field 1200 line mm−1 variable-spaced grating spectrometer with a cooled charge-coupled device readout viewed the plasma in the forward direction at 30{sup o} with respect to the x-ray laser probe. We show results from plasmas generated from ≈1 [mu]m thick targets of Al and polypropylene (C3H6). Numerical simulations of the Thomson scattering cross-sections will be presented. These simulations show electron peaks in addition to a narrow ion feature due to collective (incoherent) Thomson scattering. The electron features are shifted from the frequency of the scattered radiation approximately by the electron plasma frequency ±[omega]{sub pe} and scale as n{sub e}12.

Book Thomson Scattering Measurements of Plasma Dynamics

Download or read book Thomson Scattering Measurements of Plasma Dynamics written by S. H. Glenzer and published by . This book was released on 2006 with total page 4 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors propose to investigate the dynamics of plasmas in the warm dense matter (WDM) regime on ultra-short time scales. Accessible plasma conditions are in the density range of n = 10{sup 20} - 10{sup 23} cm{sup -3} and at moderate temperatures of T = 1 - 20 eV. These plasmas are of importance for laboratory astrophysics, high energy density science and inertial confinement fusion. They are characterized by a coupling parameter of {Lambda} {approx}> 1, where electromagnetic interactions are of the same order as the kinetic energy. The high density of the plasma makes it opaque to radiation in the visible range and, as a consequence, UV up to x-ray radiation can be used to probe such systems. Therefore a wide range in the temperature-density plane of WDM is presently unexplored and only the VUV-FEL opens for the first time the opportunity for its detailed investigation. In equilibrium, the macroscopic state of the plasma is completely characterized by its density and temperature. In pump-probe experiments however, the plasma is initially in a nonequilibrium state and relaxes towards equilibrium within the relaxation time {tau}{sub R}. For t> {tau}{sub R}, the plasma is in an equilibrium state and expands hydrodynamically on a time scale {tau}{sub H}. The proposed experiment measures the time-resolved Thomson scattering signal with the VUV-FEL radiation characterizing the plasma in equilibrium and nonequilibrium states. Both regimes are extremely interesting and will provide new insight into the following phenomena: (1) details of nonequilibrium correlations, (2) relaxation phenomena, (3) hydrodynamic expansion, (4) recombination kinetics. The time-resolved Thomson scattering signal is obtained in a pump-probe experiment by varying the delay between pump and probe. The final stage of the relaxation process (t {approx} {tau}{sub R}) is of special interest since the plasma components (electrons and ion species) can be assumed to be in quasi-equilibrium. This allows for accurate measurements of the electron temperature using the detailed balance relation. For times t {approx}{tau}{sub R} the scattering spectrum provides also the plasmon damping in nonequilibrium from which information on the formation and decay of collective excitations at short time scales can be obtained. At large time scales (t {approx} {tau}{sub H}) the hydrodynamic expansion of the plasma sets in. Detailed information on the evolution of the plasma in this regime is available from sophisticated hydrodynamic computer simulations which can be tested with the proposed measurements. With the decreasing plasma density due to the expansion, recombination processes become important and need to be considered as well.

Book Frontiers in High Energy Density Physics

Download or read book Frontiers in High Energy Density Physics written by National Research Council and published by National Academies Press. This book was released on 2003-05-11 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent scientific and technical advances have made it possible to create matter in the laboratory under conditions relevant to astrophysical systems such as supernovae and black holes. These advances will also benefit inertial confinement fusion research and the nation's nuclear weapon's program. The report describes the major research facilities on which such high energy density conditions can be achieved and lists a number of key scientific questions about high energy density physics that can be addressed by this research. Several recommendations are presented that would facilitate the development of a comprehensive strategy for realizing these research opportunities.

Book X ray Radiography and Scattering Diagnosis of Dense Shock Compressed Matter

Download or read book X ray Radiography and Scattering Diagnosis of Dense Shock Compressed Matter written by and published by . This book was released on 2009 with total page 18 pages. Available in PDF, EPUB and Kindle. Book excerpt: Highly coupled Boron plasma has been probed by spectrally resolving an x-ray source scattered by the plasma. Electron density was inferred from the inelastic feature in the collective scattering regime. In addition, the mass density inferred from the non-collective X-ray Thomson scattering has been tested with independent characterization using X-ray radiography in the same drive condition. High-intensity laser produced K-alpha radiation was used as a backlighter for these dynamically compressed plasma experiments providing a high temporal resolution of the measurements. Mass density measurements from both methods are in good agreement. The measurements yield a compression of 1.3 in agreement with detailed radiation-hydrodynamic modeling. From the charge state measured in the non-collective regime and the electron density measured in the collective regime the mass density can then be constrained to 3.15 ± 0.16.

Book Ultrafast Phenomena XVI

    Book Details:
  • Author : Paul Corkum
  • Publisher : Springer Science & Business Media
  • Release : 2010-03-23
  • ISBN : 3540959467
  • Pages : 1031 pages

Download or read book Ultrafast Phenomena XVI written by Paul Corkum and published by Springer Science & Business Media. This book was released on 2010-03-23 with total page 1031 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ultrafast Phenomena XVI presents the latest advances in ultrafast science, including both ultrafast optical technology and the study of ultrafast phenomena. It covers picosecond, femtosecond and attosecond processes relevant to applications in physics, chemistry, biology, and engineering. Ultrafast technology has a profound impact in a wide range of applications, amongst them biomedical imaging, chemical dynamics, frequency standards, material processing, and ultrahigh speed communications. This book summarizes the results presented at the 16th International Conference on Ultrafast Phenomena and provides an up-to-date view of this important and rapidly advancing field.

Book X Ray Lasers 2006

    Book Details:
  • Author : P.V. Nickles
  • Publisher : Springer Science & Business Media
  • Release : 2008-01-18
  • ISBN : 1402060181
  • Pages : 724 pages

Download or read book X Ray Lasers 2006 written by P.V. Nickles and published by Springer Science & Business Media. This book was released on 2008-01-18 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: The search for table-top and repetitive pump schemes during the last decade has been the driving force behind the spectacular advances demonstrated during the 10th International Conference on X-Ray Lasers, organized in 2006 in Berlin. The proceedings of this series of conferences constitute a comprehensive source of reference of the acknowledged state-of the-art in this specific area of laser and plasma physics.

Book

    Book Details:
  • Author :
  • Publisher :
  • Release : 1913
  • ISBN :
  • Pages : pages

Download or read book written by and published by . This book was released on 1913 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nuclear Science Abstracts

Download or read book Nuclear Science Abstracts written by and published by . This book was released on 1976 with total page 1292 pages. Available in PDF, EPUB and Kindle. Book excerpt: