EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book New numerical approaches to model hydraulic fracturing in tight reservoirs with consideration of hydro mechanical coupling effects

Download or read book New numerical approaches to model hydraulic fracturing in tight reservoirs with consideration of hydro mechanical coupling effects written by Lei Zhou and published by Cuvillier Verlag. This book was released on 2014-03-20 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this dissertation, two new numerical approaches for hydraulic fracturing in tight reservoir were developed. A more physical-based numerical 3D-model was developed for simulating the whole hydraulic fracturing process including fracture propagation, closure and contact as well as proppant transport and settling. In this approach rock formation, pore and fracture systems were assembled together, in which hydro-mechanical coupling effect, proppant transport and settling as well as their influences on fracture closure and contact were fully considered. A combined FDM and FVM schema was used to solve the problem. Three applications by using the new approach were presented. The results illustrated the whole hydraulic fracturing process well and seemed to be logical, which confirmed the ability of the developed approach to model the in-situ hydraulic fracturing operation from injection start till fully closure. In order to investigate the orientation problem of hydraulic fracturing in tight reservoir, a new approach for simulating arbitrary fracture propagation and orientation in 2D was developed. It was solved by a hybrid schema of XFEM and FVM. Three numerical studies were illustrated, which proved the ability of the developed approach to solve the orientation problem in field cases.

Book Numerical study of the stimulation related thermo hydro mechanical processes in tight gas and deep geothermal reservoirs

Download or read book Numerical study of the stimulation related thermo hydro mechanical processes in tight gas and deep geothermal reservoirs written by Wentao Feng and published by Cuvillier Verlag. This book was released on 2020-03-05 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic fracturing in combination with horizontal well is playing a key role in the efficient development of unconventional gas/oil reservoirs and deep geothermal resources. However, the integral operation, especially from the perspective of THM (Thermal-Hydraulic-Mechanic) interactions have not been studied systematically. In this thesis, targeted improvements were achieved through developing a series of mathematical/physical models, and their implementation into the existing numerical tools (FLAC3Dplus and TOUGH2MP-FLAC3D), including: (a) a new thermal module for FLAC3Dplus based entirely on the finite volume method (FVM), which is especially developed for the fracturing process and can also achieve the modeling of gel breaking; (b) a rock damage module of TOUGH2MP-FLAC3D, which also considers the impacts of rock damaging process on evolution of permeability; (c) an in-depth improved FLAC3Dplus simulator that obtains the ability to simulate a 3D fracture propagation with arbitrary orientation. After the corresponding verifications, the improved tools were applied in different case studies to reveal: a) influences of the fluid’s viscosity on the fracturing results in tight sandstone reservoirs; b) the induced seismicity during the fracturing operation and the reactivation of the natural faults; and c) the fracture propagation with arbitrary orientation.

Book Development of coupled THM models for reservoir stimulation and geo energy production with supercritical CO2 as working fluid

Download or read book Development of coupled THM models for reservoir stimulation and geo energy production with supercritical CO2 as working fluid written by Jianxing Liao and published by Cuvillier Verlag. This book was released on 2020-07-28 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this dissertation, two specific numerical models have been developed to address the issues associated with utilization of supercritical CO2, like fracture creation, proppant placement and fracture closure in unconventional gas reservoirs, reservoir stimulation, heat production and CO2 sequestration in deep geothermal reservoirs, respectively. In unconventional gas reservoir, the model consisting of classic fracture model, proppant transport model as well as temperature-sensitive fracturing fluids (CO2, thickened CO2 and guar gum) has been integrated into the popular THM coupled framework (TOUGH2MP-FLAC3D), which has the ability to simulate single fracture propagation driven by different fracturing fluids in non-isothermal condition. To characterize the fracture network propagation and internal multi fluids behavior in deep geothermal reservoirs, an anisotropic permeability model on the foundation of the continuum anisotropic damage model has been developed and integrated into the popular THM coupled framework (TOUGH2MP-FLAC3D) as well. This model has the potential to simulate the reservoir stimulation and heat extraction based on a CO2-EGS concept.

Book Geomechanics and Geodynamics of Rock Masses

Download or read book Geomechanics and Geodynamics of Rock Masses written by Vladimir Litvinenko and published by CRC Press. This book was released on 2018-05-15 with total page 1670 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geomechanics and Geodynamics of Rock Masses contains contributions presented at EUROCK 2018, the 2018 International Symposium of the International Society for Rock Mechanics (ISRM 2018, Saint Petersburg, Russia, 22-26 May 2018). Dedicated to recent advances and achievements in the fields of geomechanics and geotechnology, the main topics of the book include: - Physical and mechanical properties of fractured rock (laboratory testing and rock properties, field measurements and site investigations) - Geophysics in rock mechanics - Rock mass strength and failure - Nonlinear problems in rock mechanics - Effect of joint water on the behavior of rock foundation - Numerical modeling and back analysis - Mineral resources development: methods and rock mechanics problems - Rock mechanics and underground construction in mining, hydropower industry and civil engineering - Rock mechanics in petroleum engineering - Geodynamics and monitoring of rock mass behavior - Risks and hazards - Geomechanics of technogenic deposits Geomechanics and Geodynamics of Rock Masses will be of interest to researchers and professionals involved in the various branches of rock mechanics and rock engineering. EUROCK 2018, organized by the Saint Petersburg Mining University, is a continuation of the successful series of ISRM symposia in Europe, which began in 1992 in Chester, UK.

Book Thermo Hydro Mechanical  THM  coupled simulations of innovative enhanced geothermal systems for heat and electricity production as well as energy storage

Download or read book Thermo Hydro Mechanical THM coupled simulations of innovative enhanced geothermal systems for heat and electricity production as well as energy storage written by Muhammad Haris and published by Cuvillier Verlag. This book was released on 2022-08-05 with total page 175 pages. Available in PDF, EPUB and Kindle. Book excerpt: Enhanced geothermal systems (EGSs) evolved from the hot dry rock can provide a significant amount of energy while shifting towards negligible carbon emission. In order to investigate some important issues related to EGS, several scenarios have been analyzed using powerful numerical tools (FLAC3Dplus and TOUGH2MP-TMVOC). While conducting multiple hydraulic fracturing, it is observed that the newly created successive fracture’s configuration highly depends on the previous one under the influence of stress shadow. Therefore, the assumption of using similar multiple fracture geometries and shapes for energy exploitation may lead to erroneous estimations. A case study has been performed further using the engineering data of the GeneSys project in the North German Basin. Numerous scenarios have been investigated, and the optimized EGS project is proposed, whose installed power capacity of one side of the injection well declines from 7.17 MW to 5.08 MW over 30 years. Moreover, the Levelized cost of electricity is calculated at 5.46 c$/kWh, which is quite economical compared to the current electricity price. Finally, an innovative concept of regenerative EGS is proposed by storing surplus renewable energy in multiple hydraulic fractures that can reduce the reservoir temperature reduction rate. The results of continuous injection/production cycles depicted that a regenerative EGS could be achieved in reality.

Book Optimization of Multistage Hydraulic Fracturing Treatment for Maximization of the Tight Gas Productivity

Download or read book Optimization of Multistage Hydraulic Fracturing Treatment for Maximization of the Tight Gas Productivity written by Mengting Li and published by Cuvillier Verlag. This book was released on 2018-12-17 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic fracturing is essential technology for the development of unconventional resources such as tight gas. So far, there are no numerical tools which can optimize the whole process from geological modeling, hydraulic fracturing until production simulation with the same 3D model with consideration of the thermo-hydro-mechanical coupling. In this dissertation, a workflow and a numerical tool chain were developed for design and optimization of multistage hydraulic fracturing in horizontal well regarding a maximum productivity of the tight gas wellbore. After the verification a full 3D reservoir model is generated based on a real tight gas field in the North German Basin. Through analysis of simulation results, a new calculation formula of FCD was proposed, which takes the proppant position and concentration into account and can predict the gas production rate more accurately. However, not only FCD but also proppant distribution and hydraulic connection of stimulated fractures to the well, geological structure and the interaction between fractures are determinant for the gas production volume. Through analysis the numerical results of sensitivity analysis and optimization variations, there is no unique criterion to determine the optimal number and spacing of the fractures, it should be analyzed firstly in detail to the actual situation and decided then from case to case.

Book Hydraulic Fracture Modeling

Download or read book Hydraulic Fracture Modeling written by Yu-Shu Wu and published by Gulf Professional Publishing. This book was released on 2017-11-30 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic Fracture Modeling delivers all the pertinent technology and solutions in one product to become the go-to source for petroleum and reservoir engineers. Providing tools and approaches, this multi-contributed reference presents current and upcoming developments for modeling rock fracturing including their limitations and problem-solving applications. Fractures are common in oil and gas reservoir formations, and with the ongoing increase in development of unconventional reservoirs, more petroleum engineers today need to know the latest technology surrounding hydraulic fracturing technology such as fracture rock modeling. There is tremendous research in the area but not all located in one place. Covering two types of modeling technologies, various effective fracturing approaches and model applications for fracturing, the book equips today’s petroleum engineer with an all-inclusive product to characterize and optimize today’s more complex reservoirs. Offers understanding of the details surrounding fracturing and fracture modeling technology, including theories and quantitative methods Provides academic and practical perspective from multiple contributors at the forefront of hydraulic fracturing and rock mechanics Provides today’s petroleum engineer with model validation tools backed by real-world case studies

Book Adaptive Analysis of Damage and Fracture in Rock with Multiphysical Fields Coupling

Download or read book Adaptive Analysis of Damage and Fracture in Rock with Multiphysical Fields Coupling written by Yongliang Wang and published by Springer Nature. This book was released on 2020-08-31 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book mainly focuses on the adaptive analysis of damage and fracture in rock, taking into account multiphysical fields coupling (thermal, hydro, mechanical, and chemical fields). This type of coupling is a crucial aspect in practical engineering for e.g. coal mining, oil and gas exploration, and civil engineering. However, understanding the influencing mechanisms and preventing the disasters resulting from damage and fracture evolution in rocks require high-precision and reliable solutions. This book proposes adaptive numerical algorithms and simulation analysis methods that offer significant advantages in terms of accuracy and reliability. It helps readers understand these innovative methods quickly and easily. The content consists of: (1) a finite element algorithm for modeling the continuum damage evolution in rocks, (2) adaptive finite element analysis for continuum damage evolution and determining the wellbore stability of transversely isotropic rock, (3) an adaptive finite element algorithm for damage detection in non-uniform Euler–Bernoulli beams with multiple cracks, using natural frequencies, (4) adaptive finite element–discrete element analysis for determining multistage hydrofracturing in naturally fractured reservoirs, (5) adaptive finite element–discrete element analysis for multistage supercritical CO2 fracturing and microseismic modeling, and (6) an adaptive finite element–discrete element–finite volume algorithm for 3D multiscale propagation of hydraulic fracture networks, taking into account hydro-mechanical coupling. Given its scope, the book offers a valuable reference guide for researchers, postgraduates and undergraduates majoring in engineering mechanics, mining engineering, geotechnical engineering, and geological engineering.

Book Geomechanics and Geodynamics of Rock Masses   Volume 2

Download or read book Geomechanics and Geodynamics of Rock Masses Volume 2 written by Vladimir Litvinenko and published by CRC Press. This book was released on 2018-05-20 with total page 710 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is Volume 2 of the EUROCK 2018 proceedings. Geomechanics and Geodynamics of Rock Masses contains contributions presented at EUROCK 2018, the 2018 International Symposium of the International Society for Rock Mechanics (ISRM 2018, Saint Petersburg, Russia, 22-26 May 2018). Dedicated to recent advances and achievements in the fields of geomechanics and geotechnology, the main topics of the book include: - Physical and mechanical properties of fractured rock (laboratory testing and rock properties, field measurements and site investigations) - Geophysics in rock mechanics - Rock mass strength and failure - Nonlinear problems in rock mechanics - Effect of joint water on the behavior of rock foundation - Numerical modeling and back analysis - Mineral resources development: methods and rock mechanics problems - Rock mechanics and underground construction in mining, hydropower industry and civil engineering - Rock mechanics in petroleum engineering - Geodynamics and monitoring of rock mass behavior - Risks and hazards - Geomechanics of technogenic deposits Geomechanics and Geodynamics of Rock Masses will be of interest to researchers and professionals involved in the various branches of rock mechanics and rock engineering. EUROCK 2018, organized by the Saint Petersburg Mining University, is a continuation of the successful series of ISRM symposia in Europe, which began in 1992 in Chester, UK.

Book Applications of Geotechnical Mechanics in Underground Engineering

Download or read book Applications of Geotechnical Mechanics in Underground Engineering written by Chaojun Jia and published by Frontiers Media SA. This book was released on 2022-10-17 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Quantitative Characterization and Engineering Application of Pores and Fractures of Different Scales in Unconventional Reservoirs

Download or read book Quantitative Characterization and Engineering Application of Pores and Fractures of Different Scales in Unconventional Reservoirs written by Wenlong Ding and published by Frontiers Media SA. This book was released on 2023-02-16 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advances in Multi scale Multi physics Geophysical Modelling and Fluid Transport in Unconventional Oil and Gas Reservoir

Download or read book Advances in Multi scale Multi physics Geophysical Modelling and Fluid Transport in Unconventional Oil and Gas Reservoir written by Wenhui Song and published by Frontiers Media SA. This book was released on 2022-08-12 with total page 155 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Modeling of Hydraulic Fracture Propagation Using Thermo hydro mechanical Analysis with Brittle Damage Model by Finite Element Method

Download or read book Numerical Modeling of Hydraulic Fracture Propagation Using Thermo hydro mechanical Analysis with Brittle Damage Model by Finite Element Method written by Kyoung Min and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Better understanding and control of crack growth direction during hydraulic fracturing are essential for enhancing productivity of geothermal and petroleum reservoirs. Structural analysis of fracture propagation and impact on fluid flow is a challenging issue because of the complexity of rock properties and physical aspects of rock failure and fracture growth. Realistic interpretation of the complex interactions between rock deformation, fluid flow, heat transfer, and fracture propagation induced by fluid injection is important for fracture network design. In this work, numerical models are developed to simulate rock failure and hydraulic fracture propagation. The influences of rock deformation, fluid flow, and heat transfer on fracturing processes are studied using a coupled thermo-hydro-mechanical (THM) analysis. The models are used to simulate microscopic and macroscopic fracture behaviors of laboratory-scale uniaxial and triaxial experiments on rock using an elastic/brittle damage model considering a stochastic heterogeneity distribution. The constitutive modeling by the energy release rate-based damage evolution allows characterizing brittle rock failure and strength degradation. This approach is then used to simulate the sequential process of heterogeneous rock failures from the initiation of microcracks to the growth of macrocracks. The hydraulic fracturing path, especially for fractures emanating from inclined wellbores and closed natural fractures, often involves mixed mode fracture propagation. Especially, when the fracture is inclined in a 3D stress field, the propagation cannot be modeled using 2D fracture models. Hence, 2D/3D mixed-modes fracture growth from an initially embedded circular crack is studied using the damage mechanics approach implemented in a finite element method. As a practical problem, hydraulic fracturing stimulation often involves fluid pressure change caused by injected fracturing fluid, fluid leakoff, and fracture propagation with brittle rock behavior and stress heterogeneities. In this dissertation, hydraulic fracture propagation is simulated using a coupled fluid flow/diffusion and rock deformation analysis. Later THM analysis is also carried out. The hydraulic forces in extended fractures are solved using a lubrication equation. Using a new moving-boundary element partition methodology (EPM), fracture propagation through heterogeneous media is predicted simply and efficiently. The method allows coupling fluid flow and rock deformation, and fracture propagation using the lubrication equation to solve for the fluid pressure through newly propagating crack paths. Using the proposed model, the 2D/3D hydraulic fracturing simulations are performed to investigate the role of material and rock heterogeneity. Furthermore, in geothermal and petroleum reservoir design, engineers can take advantage of thermal fracturing that occurs when heat transfers between injected flow and the rock matrix to create reservoir permeability. These thermal stresses are calculated using coupled THM analysis and their influence on crack propagation during reservoir stimulation are investigated using damage mechanics and thermal loading algorithms for newly fractured surfaces. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/150961

Book Instability Mechanism and Disaster Prevention of the Jointed Rockmass

Download or read book Instability Mechanism and Disaster Prevention of the Jointed Rockmass written by Shuren Wang and published by Frontiers Media SA. This book was released on 2024-06-13 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discontinuities such as cracks, fissures, bedding planes, etc. resulting from different geological processes are commonly found in rock masses and often play a critical role in the initiation, propagation, and coalescence of new cracks due to stress redistribution caused by engineering activities and natural disturbances. It is challenging to determine the instability mechanism of jointed rock masses but it is vital for estimating instability disasters in jointed rock engineering.

Book Mechanics of Hydraulic Fracturing

Download or read book Mechanics of Hydraulic Fracturing written by Xin-rong Zhang and published by John Wiley & Sons. This book was released on 2023-01-05 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mechanics of Hydraulic Fracturing Comprehensive single-volume reference work providing an overview of experimental results and predictive methods for hydraulic fracture growth in rocks Mechanics of Hydraulic Fracturing: Experiment, Model, and Monitoring provides a summary of the research in mechanics of hydraulic fractures during the past two decades, plus new research trends to look for in the future. The book covers the contributions from theory, modeling, and experimentation, including the application of models to reservoir stimulation, mining preconditioning, and the formation of geological structures. The four expert editors emphasize the variety of diverse methods and tools in hydraulic fracturing and help the reader understand hydraulic fracture mechanics in complex geological situations. To aid in reader comprehension, practical examples of new approaches and methods are presented throughout the book. Key topics covered in the book include: Prediction of fracture shapes, sizes, and distributions in sedimentary basins, plus their importance in petroleum industry Real-time monitoring methods, such as micro-seismicity and trace tracking How to uncover geometries of fractures like dikes and veins Fracture growth of individual foundations and its applications Researchers and professionals working in the field of fluid-driven fracture growth will find immense value in this comprehensive reference on hydraulic fracturing mechanics.

Book Thermo Hydro Mechanical Coupling in Fractured Rock

Download or read book Thermo Hydro Mechanical Coupling in Fractured Rock written by Hans-Joachim Kümpel and published by Birkhäuser. This book was released on 2012-12-06 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: (4). The next three papers extend these views by taking a closer look on parameters that govern hydraulic diffusivity in sandstones and other types of rocks. Specific targets addressed are the influence of differential stress on permeability (5), imaging of the fracture geometry (6), and pressure induced variations in the pore geometry (7). Contributions no. 8 to 10 cover investigations of permeability-porosity relationships during rock evolution (8), of the formation, propagation, and roughness of fractures in a plexi-glass block (9), and pressure oscillation effects of two-phase flow under controlled conditions (10). The subsequent four articles focus on diverse modeling approaches. Issues considered are how the geometry and the mechanical behavior of fractures can be characterized by mathematical expressions (11), how the evolution of permeability in a microcracking rock can be expressed by an analytical model (12), deviations from the cubic law for a fracture of varying aperture (13), and the numerical simulation of scale effects in flow through fractures (14). Three further papers refer to in situ observations, being related to topics as the assessment of in situ permeability from the spatio temporal distribution of an aftershock sequence (15), to the scale dependence of hydraulic pathways in crystalline rock (16), and to the significance of pore pressure - stress coupling in deep tunnels and galleries (17).

Book Imaging the Mechanics of Hydraulic Fracturing in Naturally fractured Reservoirs Using Induced Seismicity and Numerical Modeling

Download or read book Imaging the Mechanics of Hydraulic Fracturing in Naturally fractured Reservoirs Using Induced Seismicity and Numerical Modeling written by Xueping Zhao and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: