EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book New Itinerant Electron Models of Magnetic Materials

Download or read book New Itinerant Electron Models of Magnetic Materials written by Gui-De Tang and published by Springer Nature. This book was released on 2021-05-17 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights a series of new itinerant electron models proposed based on the experimental results of electron spectra obtained since 1970. Although conventional magnetic ordering models were established before 1960, many problems remain to be solved. The new models in this book include an O 2p itinerant electron model for magnetic oxides, a new itinerant electron model for magnetic metals, and a Weiss electron pair model for the origin of magnetic ordering energy of magnetic metals and oxides. With these models, the book explains typical magnetic ordering phenomena including those that cannot be explained using conventional models. These new models are easier to understand than the conventional magnetic ordering models.

Book Theory of Itinerant Electron Magnetism

Download or read book Theory of Itinerant Electron Magnetism written by Jürgen Kübler and published by Oxford University Press. This book was released on 2017-03-23 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, in the broadest sense, is an application of quantum mechanics and statistical mechanics to the field of magnetism. Under certain well described circumstances, an immensely large number of electrons moving in the solid state of matter will collectively produce permanent magnetism. Permanent magnets are of fundamental interest, and magnetic materials are also of great practical importance as they provide a large field of technological applications. The physical details describing the many electron problem of magnetism are presented in this book on the basis of the local density functional approximation. The emphasis is on realistic magnets, for which the equations describing the many electron problem can only be solved by using computers. The great, recent and continuing improvements of computers are, to a large extent, responsible for the progress in the field. Along with a detailed introduction to the density functional theory, this book presents representative computational methods and provides the reader with a complete computer programme for the determination of the electronic structure of a magnet on a PC. A large part of the book is devoted to a detailed treatment of the connections between electronic properties and magnetism, and how they differ in the various known magnetic systems. Current trends are exposed and explained for a large class of alloys and compounds. The modern field of artificially layered systems - known as multilayers - and their industrial applications are dealt with in detail. Finally, an attempt is made to relate the rich thermodynamic properties of magnets to the ab initio results originating from the electronic structure.

Book Proceedings of the Seventh Conference on Magnetism and Magnetic Materials

Download or read book Proceedings of the Seventh Conference on Magnetism and Magnetic Materials written by J.A. Osborn and published by Springer. This book was released on 2013-11-11 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Papers presented at the Conference on Magnetism and Magnetic Materials, Phoenix, Arizona, November 13-16, 1961.

Book Handbook of Advanced Magnetic Materials

Download or read book Handbook of Advanced Magnetic Materials written by Yi Liu and published by Springer Science & Business Media. This book was released on 2008-11-23 with total page 1844 pages. Available in PDF, EPUB and Kindle. Book excerpt: In December 2002, the world's first commercial magnetic levitation super-train went into operation in Shanghai. The train is held just above the rails by magnetic levitation (maglev) and can travel at a speed of 400 km/hr, completing the 30km journey from the city to the airport in minutes. Now consumers are enjoying 50 GB hard drives compared to 0.5 GB hard drives ten years ago. Achievements in magnetic materials research have made dreams of a few decades ago reality. The objective of the four volume reference, Handbook of Advanced Magnetic Materials, is to provide a comprehensive review of recent progress in magnetic materials research. Each chapter will have an introduction to give a clear definition of basic and important concepts of the topic. The details of the topic are then elucidated theoretically and experimentally. New ideas for further advancement are then discussed. Sufficient references are also included for those who wish to read the original work. In the last decade, one of the most significant thrust areas of materials research has been nanostructured magnetic materials. There are several critical sizes that control the behavior of a magnetic material, and size effects become especially critical when dimensions approach a few nanometers, where quantum phenomena appear. The first volume of the book, Nanostructured Advanced Magnetic Materials, has therefore been devoted to the recent development of nanostructured magnetic materials, emphasizing size effects. Our understanding of magnetism has advanced with the establishment of the theory of atomic magnetic moments and itinerant magnetism. Simulation is a powerful tool for exploration and explanation of properties of various magnetic materials. Simulation also provides insight for further development of new materials. Naturally, before any simulation can be started, a model must be constructed. This requires that the material be well characterized. Therefore the second volume, Characterization and Simulation provides a comprehensive review of both experimental methods and simulation techniques for the characterization of magnetic materials. After an introduction, each section gives a detailed description of the method and the following sections provide examples and results of the method. Finally further development of the method will be discussed. The success of each type of magnetic material depends on its properties and cost which are directly related to its fabrication process. Processing of a material can be critical for development of artificial materials such as multilayer films, clusters, etc. Moreover, cost-effective processing usually determines whether a material can be commercialized. In recent years processing of materials has continuously evolved from improvement of traditional methods to more sophisticated and novel methods. The objective of the third volume, Processing of Advanced Magnetic Materials, is to provide a comprehensive review of recent developments in processing of advanced magnetic materials. Each chapter will have an introduction and a section to provide a detailed description of the processing method. The following sections give detailed descriptions of the processing, properties and applications of the relevant materials. Finally the potential and limitation of the processing method will be discussed. The properties of a magnetic material can be characterized by intrinsic properties such as anisotropy, saturation magnetization and extrinsic properties such as coercivity. The properties of a magnetic material can be affected by its chemical composition and processing route. With the continuous search for new materials and invention of new processing routes, magnetic properties of materials cover a wide spectrum of soft magnetic materials, hard magnetic materials, recording materials, sensor materials and others. The objective of the fourth volume, Properties and Applications of Advanced Magnetic Materials, is to provide a comprehensive review of recent development of various magnetic materials and their applications. Each chapter will have an introduction of the materials and the principles of their applications. The following sections give a detailed description of the processing, properties and applications. Finally the potential and limitation of the materials will be discussed.

Book Physics of Magnetism and Magnetic Materials

Download or read book Physics of Magnetism and Magnetic Materials written by K.H.J Buschow and published by Springer Science & Business Media. This book was released on 2007-05-08 with total page 175 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, the fundamentals of magnetism are treated, starting at an introductory level. The origin of magnetic moments, the response to an applied magnetic field, and the various interactions giving rise to different types of magnetic ordering in solids are presented and many examples are given. Crystalline-electric-field effects are treated at a level that is sufficient to provide the basic knowledge necessary in understanding the properties of materials in which these effects play a role. Itinerant-electron magnetism is presented on a similar basis. Particular attention has been given to magnetocrystalline magnetic anisotropy and the magnetocaloric effect. Also, the usual techniques for magnetic measurements are presented. About half of the book is devoted to magnetic materials and the properties that make them suitable for numerous applications. The state of the art is presented of permanent magnets, high-density recording materials, soft-magnetic materials, Invar alloys and magnetostrictive materials. Many references are given.

Book Supermagnets  Hard Magnetic Materials

Download or read book Supermagnets Hard Magnetic Materials written by G.J Long and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 840 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book you are now holding represents the final step in a long process for the editors and organizers of the Advanced Study Institute on hard magnetic materials. The editors interest in hard magnetic materials began in 1985 with an attempt to better understand the moments associated with the different iron sites in Nd Fe B. These 14 moments can be obtained from neutron diffraction studies, but we qUickly realized that iron-57 Mossbauer spectroscopy should lead to a better determination of these moments. However, it was also realized that the complex Mossbauer spectra obtained for these hard magnetic materials could not be easily understood without a broad knowledge of their various structural, electronic, and magnetic properties. Hence it seemed useful to the editors to bring together scientists and engineers to discuss, in a tutorial setting, the various properties of these and future hard magnetic materials. We believe the inclusion of engineers as well as scientists in these discussions was essential because the design of new magnetic materials depends very much upon the mode in which they are used in practical devices.

Book Spin Fluctuations in Itinerant Electron Magnetism

Download or read book Spin Fluctuations in Itinerant Electron Magnetism written by Toru Moriya and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ferromagnetism of metallic systems, especially those including transition metals, has been a controversial subject of modern science for a long time. This controversy sterns from the apparent dual character of the d-electrons responsible for magnetism in transition metals, i.e., they are itinerant elec trons described by band theory in their ground state, while at finite tem peratures they show various properties that have long been attributed to a system consisting of local magnetic moments. The most familiar example of these properties is the Curie-Weiss law of magnetic susceptibility obeyed by almost all ferromagnets above their Curie temperatures. At first the problem seemed to be centered around whether the d-elec trons themselves are localized or itinerant. This question was settled in the 1950s and early 1960s by various experimental investigations, in particular by observations of d-electron Fermi surfaces in ferromagnetic transition metals. These observations are generally consistent with the results of band calculations. Theoretical investigations since then have concentrated on explaining this dual character of d-electron systems, taking account of the effects of electron-electron correlations in the itinerant electron model. The problem in physical terms is to study the spin density fluctuati·ons, which are ne glected in the mean-field or one-electron theory, and their influence on the physical properties.

Book Function and Regulation of Cellular Systems

Download or read book Function and Regulation of Cellular Systems written by Andreas Deutsch and published by Springer Science & Business Media. This book was released on 2004-02-20 with total page 688 pages. Available in PDF, EPUB and Kindle. Book excerpt: Current biological research demands the extensive use of sophisticated mathematical methods and computer-aided analysis of experiments and data. This highly interdisciplinary volume focuses on structural, dynamical and functional aspects of cellular systems and presents corresponding experiments and mathematical models. The book may serve as an introduction for biologists, mathematicians and physicists to key questions in cellular systems which can be studied with mathematical models. Recent model approaches are presented with applications in cellular metabolism, intra- and intercellular signaling, cellular mechanics, network dynamics and pattern formation. In addition, applied issues such as tumor cell growth, dynamics of the immune system and biotechnology are included.

Book Nanoscale Magnetic Materials and Applications

Download or read book Nanoscale Magnetic Materials and Applications written by J. Ping Liu and published by Springer Science & Business Media. This book was released on 2010-04-05 with total page 731 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoscale Magnetic Materials and Applications covers exciting new developments in the field of advanced magnetic materials. Readers will find valuable reviews of the current experimental and theoretical work on novel magnetic structures, nanocomposite magnets, spintronic materials, domain structure and domain-wall motion, in addition to nanoparticles and patterned magnetic recording media. Cutting-edge applications in the field are described by leading experts from academic and industrial communities. These include new devices based on domain wall motion, magnetic sensors derived from both giant and tunneling magnetoresistance, thin film devices in micro-electromechanical systems, and nanoparticle applications in biomedicine. In addition to providing an introduction to the advances in magnetic materials and applications at the nanoscale, this volume also presents emerging materials and phenomena, such as magnetocaloric and ferromagnetic shape memory materials, which motivate future development in this exciting field. Nanoscale Magnetic Materials and Applications also features a foreword written by Peter Grünberg, recipient of the 2007 Nobel Prize in Physics.

Book Handbook of Advanced Magnetic Materials

Download or read book Handbook of Advanced Magnetic Materials written by David J. Sellmyer and published by 清华大学出版社有限公司. This book was released on 2005 with total page 640 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Physics and Engineering Applications of Magnetism

Download or read book Physics and Engineering Applications of Magnetism written by Yoshikazu Ishikawa and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book was originally published in Japanese in honour of Professor S. Chikazumi on the occasion of his retirement from the University of Tokyo in March 1982. Physicists who had been supervised by him or had closely col laborated with him wrote articles on recent developments in magnetism and its engineering applications. In the preface of his excellent textbook Physics of Magnetism (Wiley, 1964), Professor Chikazumi says that recent research in magnetism deals with fundamental physical problems and, at the same time, with more secondary magnetic phenomena, as well as with engineering applications of magnetic materials to electromagnetic machines, permanent magnets and electronic computers, and that the purpose of his textbook is to give a general view of these magnetic phenomena, focusing its main interest at the center of such a broad field. Always keeping such a viewpoint in mind, Professor Chikazumi has contributed a great deal to both fundamental physics and applications of magnetism. This is described in Chap. 1 of this book. Many books have been published on both the physics and applications of magnetism. However, no single book has a viewpoint covering both of them. The recent development of high technology needs such a broad viewpoint for scientists and engineers since it is a product of both fundamental science and technology. Research in magnetism is based on the response which materials show to the application of magnetic fields.

Book Simple Models of Magnetism

    Book Details:
  • Author : Ralph Skomski
  • Publisher : Oxford University Press on Demand
  • Release : 2008-01-17
  • ISBN : 0198570759
  • Pages : 366 pages

Download or read book Simple Models of Magnetism written by Ralph Skomski and published by Oxford University Press on Demand. This book was released on 2008-01-17 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents introductory appendices and panels on quantum mechanics, statistical mechanics, and other topics.

Book Magnetism and Magnetic Materials   1972

Download or read book Magnetism and Magnetic Materials 1972 written by Charles Danne Graham and published by . This book was released on 1973 with total page 902 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Carbon Based Magnetism

    Book Details:
  • Author : Tatiana Makarova
  • Publisher : Elsevier
  • Release : 2006-01-16
  • ISBN : 0080460372
  • Pages : 577 pages

Download or read book Carbon Based Magnetism written by Tatiana Makarova and published by Elsevier. This book was released on 2006-01-16 with total page 577 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbon Based Magnetism is the most complete, detailed, and accurate guide on the magnetism of carbon, the main element of living creatures. Written by the leading experts in the field, the book provides a comprehensive review of relevant experimental data and theoretical concepts related to the magnetism of metal-free carbon systems. These systems include carbon based compounds, namely organic radical magnetic systems, and magnetic materials based on carbon structures. The aim is to advance the understanding of the fundamental properties of carbon. This volume discusses all major modern hypotheses on the physical nature of magnetic ordering in carbon systems. The first chapters deal with magnetic ordering mechanisms in p-electron systems as well as molecular magnets with spins residing only in p-orbitals. The following chapters explore the magnetic properties of pure carbon, with particular emphasis on nanosized carbon systems with closed boundary (fullerenes and nanotubes) and with open boundary (structures with edge-localized magnetic states). The remaining chapters focus on newer topics: experimental observation and theoretical models for magnetic ordering above room temperature in pure carbon. The book also includes twenty three review articles that summarize the most significant recent and ongoing exciting scientific developments and provide the explanation. It also highlights some problems that have yet to be solved and points out new avenues for research. This book will appeal to physicists, chemists and biologists. - The most complete, detailed, and accurate Guide in the magnetism of carbon - Dynamically written by the leading experts - Deals with recent scientific highlights - Gathers together chemists and physicists, theoreticians and experimentalists - Unified treatment rather than a series of individually authored papers - Description of genuine organic molecular ferromagnets - Unique description of new carbon materials with Curie temperatures well above ambient.

Book Hydrogen Materials Science and Chemistry of Carbon Nanomaterials

Download or read book Hydrogen Materials Science and Chemistry of Carbon Nanomaterials written by T. Nejat Veziroglu and published by Springer Science & Business Media. This book was released on 2007-05-16 with total page 870 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book considers the various advanced hydrogen materials and technologies of their synthesis. It presents the consideration of the physics, chemistry, thermodynamics and kinetics of processes of energy conversion, which occur at hydrogen production, storage, transportation and with its use. It also discusses the pioneering attempts to transform motor transport, airplanes, domestic technics, illumination and industrial manufacture of hydrogen fuel.

Book Spin Waves and Magnetic Excitations

Download or read book Spin Waves and Magnetic Excitations written by and published by Elsevier. This book was released on 2012-12-02 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern Problems in Condensed Matter Sciences, Volume 22.1: Spin Waves and Magnetic Excitations, Part I focuses on the principles, methodologies, approaches, and reactions involved in spin waves and magnetic excitations, including, Brillouin-Mandelstam light scattering, optical magnetic excitations, and magnetic dielectrics. The selection first elaborates on spin waves in magnetic dielectrics current status of the theory and light scattering from spin waves. Discussions focus on magneto-optic effects and the mechanism of light scattering in magnets, Brillouin-Mandelstam light scattering, Raman scattering, Collinear Heisenberg ferromagnet, low-temperature phase transitions, and low-dimensional systems. The text then ponders on optical magnetic excitations, spin waves above the threshold of parametric excitations, and theory of spin excitations in rare earth systems. Topics include Hamiltonian for rare earth systems, parametric instability of spin waves in magnetic dielectrics, nonstationary processes in parametric excitation of spin waves, radiative decay of magnetic excitons, and mechanism of the generation of magnetic excitations by light. The book tackles 4f moments and their interaction with conduction electrons and neutron scattering studies of magnetic excitations in itinerant magnets, including magnetic excitations at finite and low temperatures, paramagnetic scattering, coupling to conduction electrons, and virtual magnetic excitations. The selection is highly recommended for researchers wanting to study spin waves and magnetic excitations.

Book Springer Handbook of Electronic and Photonic Materials

Download or read book Springer Handbook of Electronic and Photonic Materials written by Safa Kasap and published by Springer. This book was released on 2017-10-04 with total page 1536 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second, updated edition of this essential reference book provides a wealth of detail on a wide range of electronic and photonic materials, starting from fundamentals and building up to advanced topics and applications. Its extensive coverage, with clear illustrations and applications, carefully selected chapter sequencing and logical flow, makes it very different from other electronic materials handbooks. It has been written by professionals in the field and instructors who teach the subject at a university or in corporate laboratories. The Springer Handbook of Electronic and Photonic Materials, second edition, includes practical applications used as examples, details of experimental techniques, useful tables that summarize equations, and, most importantly, properties of various materials, as well as an extensive glossary. Along with significant updates to the content and the references, the second edition includes a number of new chapters such as those covering novel materials and selected applications. This handbook is a valuable resource for graduate students, researchers and practicing professionals working in the area of electronic, optoelectronic and photonic materials.