EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book New Approaches to Pulse Compression Techniques of Phase Coded Waveforms in Radar

Download or read book New Approaches to Pulse Compression Techniques of Phase Coded Waveforms in Radar written by and published by . This book was released on with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The present thesis aims to make an in-depth study of Radar pulse compression, Neural Networks and Phase coded pulse compression codes. Pulse compression is a method which combines the high energy of a longer pulse width with the high resolution of a narrow pulse width. The major aspects that are considered for a pulse compression technique are signal to sidelobe ratio (SSR) performance, noise performance and Doppler shift performance. Matched filtering of biphase coded radar signals create unwanted sidelobes which may mask important information. The adaptive filtering techniques like Least Mean Square (LMS), Recursive Least Squares (RLS), and modified RLS algorithms are used for pulse radar detection and the results are compared. In this thesis, a novel approach for pulse compression using Recurrent Neural Network (RNN) is proposed. The 13-bit and 35-bit barker codes are used as signal codes to RNN and results are compared with Multilayer Perceptron (MLP) network. RNN yields better signal-to-sidelobe ratio (SSR), error convergence speed, noise performance, range resolution ability and Doppler shift performance than neural network (NN) and some traditional algorithms like auto correlation function(ACF) algorithm. But the SSR obtained from RNN is less for most of the applications. Hence a Radial Basis Function (RBF) neural network is implemented which yields better convergence speed, higher SSRs in adverse situations of noise and better robustness in Doppler shift tolerance than MLP and ACF algorithm. There is a scope of further improvement in performance in terms of SSR, error convergence speed, and Doppler shift. A novel approach using Recurrent RBF is proposed for pulse radar detection, and the results are compared with RBF, MLP and ACF. Biphase codes, namely barker codes are used as inputs to all these neural networks. The disadvantages of biphase codes include high sidelobes and poor Doppler tolerance. The Golay complementary codes have zero sidelobes but they ar.

Book Radar Signals

Download or read book Radar Signals written by Charles Cook and published by Elsevier. This book was released on 2012-12-02 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: Radar Signals: An Introduction to Theory and Application introduces the reader to the basic theory and application of radar signals that are designated as large time-bandwidth or pulse-compression waveforms. Topics covered include matched filtering and pulse compression; optimum predetection processing; the radar ambiguity function; and the linear frequency modulation waveform and matched filter. Parameter estimation and discrete coded waveforms are also discussed, along with the effects of distortion on matched-filter signals. This book is comprised of 14 chapters and begins with an overview of the concepts and techniques of pulse compression matched filtering, with emphasis on coding source and decoding device. The discussion then turns to the derivation of the matched-filter properties in order to maximize the signal-to-noise ratio; analysis of radar ambiguity function using the principle of stationary phase; parameter estimation and the method of maximum likelihood; and measurement accuracies of matched-filter radar signals. Waveform design criteria for multiple and dense target environments are also considered. The final chapter describes a number of techniques for designing microwave dispersive delays. This monograph will be a useful resource for graduate students and practicing engineers in the field of radar system engineering.

Book Phase coded Pulse Compression

Download or read book Phase coded Pulse Compression written by Festo Didactic Ltd and published by . This book was released on 2017 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Phase coded Pulse Compression

Download or read book Phase coded Pulse Compression written by and published by . This book was released on 2017 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Contributions to High Range Resolution Radar Waveforms

Download or read book Contributions to High Range Resolution Radar Waveforms written by Mahdi Saleh and published by . This book was released on 2020 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: In various radar systems, a great deal of interest has been paid to selecting a waveformand designing a whole processing chain from the transmitter to the receiver toobtain the high range resolution profile (HRRP). For the last decades, radar designershave focused their attentions on different waveforms such as the pulse compressionwaveforms and the stepped frequency (SF) waveform:On the one hand, three different types of wide-band pulse compression waveforms havebeen proposed: the linear frequency modulation (LFM) waveform, the phase coded(PC) waveform, and the non-linear frequency modulation (NLFM) waveform. They arevery popular but the sampling frequency at the receiver is usually large. This hence requiresan expensive analog-to-digital convertor (ADC). In addition, the PC and NLFMwaveforms may be preferable in some high range resolution applications since they leadto peak sidelobe ratio (PSLR) and integrated sidelobe ratio (ISLR) better than the onesobtained with the LFM waveform.On the other hand, when dealing with SF waveforms, a small sampling frequency canbe considered, making it possible to use a cheap ADC.Pulse compression and SF waveforms can be combined to take advantage of both. Althoughthe standard combination of PC or NLFM with SF leads to the exploitation ofa cheap ADC, the performance of the PC waveform or NLFM waveform in terms ofPSLR and ISLR cannot be attained. As the PSLR and the ISLR have a great influenceon the probability of detection and probability of false alarm, our purpose in the PhDdissertation is to present two new processing chains, from the transmitter to the receiver:1) In the first approach, the spectrum of a wide-band pulse compression pulse is splitinto a predetermined number of portions. Then, the time-domain transformedversions of these various portions are transmitted. At the receiver, the receivedechoes can be either processed with a modified FD algorithm or a novel timewaveformreconstruction (TWR) algorithm. A comparative study is carried outbetween the different processing chains, from the transmitter to the receiver, thatcan be designed. Our simulations show that the performance in terms of PSLRand ISLR obtained with the TWR algorithm is better than that of the modified FDalgorithm for a certain number of portions. This comes at the expense of an additionalcomputational cost. Moreover, whatever the pulse compression used, the approach we present outperforms the standard SF waveforms in terms of PSLRand ISLR.2) In the second approach, we suggest approximating the wide-band NLFM by apiecewise linear waveform and then using it in a SF framework. Thus, a variablechirp rate SF-LFM waveform is proposed where SF is combined with a train ofLFM pulses having different chirp rates with different durations and bandwidths.The parameters of the proposed waveform are derived from the wide-band NLFMwaveform. Then, their selection is done by considering a multi-objective optimization issue taking into account the PSLR, the ISLR and the range resolution.The latter is addressed by using a genetic algorithm. Depending on the weightsused in the multi-objective criterion and the number of LFM pulses that is considered, the performance of the resulting waveforms vary.An appendix is finally provided in which additional works are presented dealing withmodel comparison based on Jeffreys divergence.

Book Phase coded Pulse Compression

Download or read book Phase coded Pulse Compression written by and published by . This book was released on 2017 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book WAVEFORM DESIGN FOR PULSE DOPPLER RADAR

Download or read book WAVEFORM DESIGN FOR PULSE DOPPLER RADAR written by and published by . This book was released on 2005 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: ABSTRACT WAVEFORM DESIGN FOR PULSE DOPPLER RADAR AÐIRMAN, Handan M.S., Department of Electrical and Electronics Engineering Supervisor: Prof. Dr. Mete Severcan December 2005, 100 pages This study is committed to the investigation of optimum waveforms for a pulse doppler radar which uses a non linear high power amplifier in the transmitter. The optimum waveform is defined as the waveform with the lowest peak and integrated side lobe level, the narrowest main lobe in its autocorrelation and the narrowest bandwidth in its spectrum. The Pulse Compression method is used in radar systems since it is more advantageous in terms of the resolution. Among all pulse compression methods, the main focus of this study is on Phase Coding. Two types of radar waveforms assessed throughout this study are Discrete Phase Modulated Waveforms and Continuous Phase Modulated Waveforms. The continuous phase modulated waveforms are arranged under two titles: the memoryless phase modulated waveform and the waveform modulated with memory. In order to form memoryless continuous phase waveforms, initially, discrete phase codes are obtained by using Genetic Algorithm. Following this process, a new phase shaping pulse is defined and applied on the discrete phase waveforms. Among the applicable modulation with memory techniques, Continuous Phase Modulation maintains to be the most appropriate. The genetic algorithm is used to find different lengths of optimum data sequences which form the continuous phase scheme.

Book A Study of Radar Pulse Compression Using Complementary Series to Modulate the Transmitted Waveform

Download or read book A Study of Radar Pulse Compression Using Complementary Series to Modulate the Transmitted Waveform written by Gerald Joseph Sieren and published by . This book was released on 1969 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pulse compression radars have resulted from the need to put more energy into a transmitted pulse by increasing the pulse duration, yet retaining or improving the target range resolution. FM chirp and phase-coded pulse compression using a single binary code to modulate the carrier are somewhat degraded by the amount of hash, or range sidelobes in the output of the matched-filter receiver. Pulse compression using complementary series, in which two binary series are transmitted, results in no range sidelobes in the detected pulse, since the autocorrelation functions of the two series completely cancel each other everywhere except at zero shift, where they add to produce a sharp peak with amplitude 2N times the received pulse amplitude, where N is the number of digits in each series. After introductory material on complementary series and pulse-compression systems, the thesis discusses the design, construction and testing of a pulse-compression system using complementary series of length four. The intent was to show feasibility, rather than to produce results using actual targets. (Author).

Book Radar Sensor Networks

Download or read book Radar Sensor Networks written by Lei Xu and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In this dissertation, we have studied totally eight topics which are focused on but not limited to radar sensor networks (RSN) from a signal processing perspective. We propose the definitions of ZCZ/LCZ (Zero Correlation Zone/Low Correlation Zone) sequence-pair sets, provided three methods to construct optimized optimized punctured LCZ/ZCZ sequence-pair sets and study their properties in chapter 2 and 3. We further investigate the waveform design problem for radar system, radar sensor network, sonar sensor network and MIMO radar system from chapter 4 to chapter 7. In addition, we study radar sensor network from the view of information theory in chapter 8. We also study compressive sensing and apply it to RSN to further investigate the system performance in chapter 9 and chapter 10. In chapter 11, we briefly conclude our work in this dissertation. The main innovation works of this dissertation are as following. We propose the LCZ/ZCZ Sequence-pair Sets that have ideal autocorrelation sidelobes and cross correlation values during LCZ/ZCZ. We also provide three methods to construct the Optimized Punctured LCZ/ZCZ Sequence-pair Sets which is a specific case of the LCZ/ZCZ Sequence-pair Sets. We not only theoretically prove that the sequence-pair sets constructed by our methods satisfy the definitions of the Optimized Punctured LCZ/ZCZ Sequence-pair sets, but also provide examples for each method and analyze properties of the Optimized Punctured LCZ/ZCZ Sequence-pair sets to help further investigating our proposed codes. The main purpose of pulse compression is to raise the signal to maximum sidelobe (signal-to-sidelobe) ratio to improve the target detection and range resolution abilities of the system. We apply the Optimized Punctured Binary Sequence-pair to the Radar system as the phase coded waveforms which is a kind of pulse compression codes. Comparing with the Barker and P4 codes of corresponding length, the Radar system within the Optimized Punctured Binary Sequence-pair could clearly improve the detection performances. Since multiple radar sensors can be combined to form a multi radar system to overcome performance degradation of single radar along with waveform optimization, we theoretically study RSN design using phase coded waveforms. We apply our newly proposed codes to RSN and analyze the detection performance of the system. We also apply the proposed ternary codes to the Sonar Sensor Network (SSN) as pulse compression codes for narrowband pulse signals and simulate the target detection performance of the system. We provide two MIMO radar systems using our proposed codes as orthogonal pulse compression codes to study the direction finding performance of the MIMO radar systems. We theoretically analyze the two MIMO radar system models and simulate the direction finding performance of the system. We also studied the RSN from the view of information theory. We investigate the use of information theory to design waveforms for the measurement of extended radar targets in RSN. We optimized the estimation waveforms that maximize the mutual information between a target ensemble and the received signal within additive Gaussian noise so that characteristics of the target could be well recognized. Finally, we provide and analyze a CS-SVD method to simplify the signal recovery algorithm and introduce CS to RSN using pulse compression technique. Our idea is to employ a set of Stepped-Frequency (SF) waveforms as pulse compression codes for transmit sensors, and to use the same SF waveforms as the sparse matrix to compress the signal in the receiving sensor. We obtain that the signal samples along the time domain could be largely compressed so that they could be perfectly recovered by a small number of measurements. We develop a Maximum Likelihood (ML) Algorithm for Radar Cross Section (RCS) parameter estimation and provide the Cramer-Rao lower bound (CRLB) to validate the theoretical result.

Book Radar Signals

Download or read book Radar Signals written by Nadav Levanon and published by John Wiley & Sons. This book was released on 2004-09-21 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: A text and general reference on the design and analysis of radar signals As radar technology evolves to encompass a growing spectrum of applications in military, aerospace, automotive, and other sectors, innovations in digital signal processing have risen to meet the demand. Presenting a long overdue, up-to-date, dedicated resource on radar signals, the authors fill a critical gap in radar technology literature. Radar Signals features in-depth coverage of the most prevalent classical and modern radar signals used today, as well as new signal concepts developed in recent years. Inclusion of key MATLAB software codes throughout the book demonstrates how they dramatically simplify the process of describing and analyzing complex signals. Topics covered include: * Matched filter and ambiguity function concepts * Basic radar signals, with both analytical and numerical analysis * Frequency modulated and phase-coded pulses * Complete discussion of band-limiting schemes * Coherent LFM pulse trains-the most popular radar signal * Diversity in pulse trains, including stepped frequency pulses * Continuous-wave signals * Multicarrier phase-coded signals Combining lucid explanation, preferred signal tables, MATLAB codes, and problem sets in each chapter, Radar Signals is an essential reference for professionals-and a systematic tutorial for any seeking to broaden their knowledge base in this dynamic field.

Book Technical Note on Pulse Compression and Coded Waveform Techniques

Download or read book Technical Note on Pulse Compression and Coded Waveform Techniques written by Melpar, Inc and published by . This book was released on 1959 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Synthetic Impulse and Aperture Radar  SIAR

Download or read book Synthetic Impulse and Aperture Radar SIAR written by Baixiao Chen and published by John Wiley & Sons. This book was released on 2014-01-15 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analyzes and discusses the operating principle, signal processing method, and experimental results of this advanced radar technology This book systematically discusses the operating principle, signal processing method, target measurement technology, and experimental results of a new kind of radar called synthetic impulse and aperture radar (SIAR). The purpose is to help readers acquire an insight into the concept and principle of the SIAR, to know its operation mode, signal processing method, the difference between the traditional radar and itself, the designing ideals, and the developing method. It includes 10 chapters. Chapter 1 gives an introduction to the basic principle of SIAR and its characteristic of four antis. Chapter 2 introduces the operating principles and system constitution of SIAR. Chapter 3 presents the main waveforms and the corresponding signal processing methods. Chapter 4 is about the long-time integration technique. Chapter 5 shows the high-accuracy measurement and tracking of 4D parameters of target in SIAR. The range-angle coupling and decoupling are introduced in Chapter 6, where a criteria for transmit frequency optimization of array elements is studied to overcome the coupling among range, azimuth and elevation. In Chapter 7, detection and tracking of targets in strong interference background is investigated. Chapter 8 analyzes quantitatively the influence of array error on the tracking accuracy of SIAR. Expansion of impulse and aperture synthesis to HF band and microwave band are introduced respectively in Chapter 9 and Chapter 10. The operating principle of the novel bi-static surface wave radar system, as well as the experimental system and the experimental results are included in Chapter 9. Written by a highly experienced author with extensive knowledge of SIAR (Chen), the book can be used as a reference for engineering technical personnel and scientific research personnel working in the research of SIAR, MIMO radar, digital radar or other new type of radar. It can also be a reference for teachers and students in universities who engage in related professional work. Details the operating principle, signal processing method, target measurement technology, and experimental results of synthetic impulse and aperture radar (SIAR) Expands the technique of impulse and aperture synthesisfrom the VHF band to the HF band and the microwave band Written by a leading author with many years’ research and practical experience in sparse array SIAR, a typical MIMO radar Engineers, researchers and postgraduates working in radar engineering will find this an invaluable resource.

Book Code Inverse Filtering for Complete Sidelobe Removal in Binary Phase Coded Pulse Compression Systems

Download or read book Code Inverse Filtering for Complete Sidelobe Removal in Binary Phase Coded Pulse Compression Systems written by and published by . This book was released on 2005 with total page 7 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pulse compression is used in radar systems to improve range resolution while maintaining a high duty cycle. In addition to practical implementation constraints, the key issues for the selection of a pulse-compression waveform are mismatch loss, peak / integrated range sidelobes, and Doppler tolerance. While much progress has been made in the design of nonlinear frequency modulated (FM) chirp waveforms satisfying these requirements, the corresponding performance for binary phase-coded waveforms is often inadequate. In order to improve the range sidelobes achieved with phase-coded waveforms, specially designed mismatched pulse compression filters can be used. Several such approaches have been described in the literature since 1959. This paper will review these techniques and highlight a particular approach using infinite impulse response (IIR) filters, which has received little attention in the past. Using this technique the performance for a number of binary phase codes of different length have been determined and their Doppler tolerance is investigated.

Book Radar Signal Analysis and Processing Using MATLAB

Download or read book Radar Signal Analysis and Processing Using MATLAB written by Bassem R. Mahafza and published by CRC Press. This book was released on 2016-04-19 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offering radar-related software for the analysis and design of radar waveform and signal processing, Radar Signal Analysis and Processing Using MATLAB provides a comprehensive source of theoretical and practical information on radar signals, signal analysis, and radar signal processing with companion MATLAB code. Aft

Book Principles of Modern Radar

Download or read book Principles of Modern Radar written by Mark A. Richards and published by SciTech Publishing. This book was released on 2023-02-17 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Principles of Modern Radar: Basic Principles is a comprehensive text for courses in radar systems and technology, a professional training textbook for formal in-house courses and for new hires; a reference for ongoing study following a radar short course and a self-study and professional reference book.

Book Fundamentals of Radar Signal Processing

Download or read book Fundamentals of Radar Signal Processing written by Mark A. Richards and published by McGraw Hill Professional. This book was released on 2005-07-15 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in DSP (digital signal processing) have radically altered the design and usage of radar systems -- making it essential for both working engineers as well as students to master DSP techniques. This text, which evolved from the author's own teaching, offers a rigorous, in-depth introduction to today's complex radar DSP technologies. Contents: Introduction to Radar Systems * Signal Models * Sampling and Quantization of Pulsed Radar Signals * Radar Waveforms * Pulse Compression Waveforms * Doppler Processing * Detection Fundamentals * Constant False Alarm Rate (CFAR) Detection * Introduction to Synthetic Aperture Imaging

Book MATLAB Simulations for Radar Systems Design

Download or read book MATLAB Simulations for Radar Systems Design written by Bassem R. Mahafza and published by CRC Press. This book was released on 2003-12-17 with total page 706 pages. Available in PDF, EPUB and Kindle. Book excerpt: Simulation is integral to the successful design of modern radar systems, and there is arguably no better software for this purpose than MATLAB. But software and the ability to use it does not guarantee success. One must also: Understand radar operations and design philosophy Know how to select the radar parameters to meet the design req