Download or read book Neurocomputing Research Developments written by Hugo A. Svensson and published by Nova Biomedical Books. This book was released on 2007 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neurocomputing is at the centre of multidisciplinary research, which involves computations by biological neural networks and those by artificial neural networks. Topics include vision, signal and pattern processing, learning, neurodynamics, associative memory; hardware and so on in the networks. This important book presents new research in the field.
Download or read book Advances in Neural Computation Machine Learning and Cognitive Research written by Boris Kryzhanovsky and published by Springer. This book was released on 2018-05-12 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes new theories and applications of artificial neural networks, with a special focus on neural computation, cognitive science and machine learning. It discusses cutting-edge research at the intersection between different fields, from topics such as cognition and behavior, motivation and emotions, to neurocomputing, deep learning, classification and clustering. Further topics include signal processing methods, robotics and neurobionics, and computer vision alike. The book includes selected papers from the XIX International Conference on Neuroinformatics, held on October 2-6, 2017, in Moscow, Russia.
Download or read book Neural Information Processing Research and Development written by Jagath Chandana Rajapakse and published by Springer. This book was released on 2012-12-06 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of neural information processing has two main objects: investigation into the functioning of biological neural networks and use of artificial neural networks to sol ve real world problems. Even before the reincarnation of the field of artificial neural networks in mid nineteen eighties, researchers have attempted to explore the engineering of human brain function. After the reincarnation, we have seen an emergence of a large number of neural network models and their successful applications to solve real world problems. This volume presents a collection of recent research and developments in the field of neural information processing. The book is organized in three Parts, i.e., (1) architectures, (2) learning algorithms, and (3) applications. Artificial neural networks consist of simple processing elements called neurons, which are connected by weights. The number of neurons and how they are connected to each other defines the architecture of a particular neural network. Part 1 of the book has nine chapters, demonstrating some of recent neural network architectures derived either to mimic aspects of human brain function or applied in some real world problems. Muresan provides a simple neural network model, based on spiking neurons that make use of shunting inhibition, which is capable of resisting small scale changes of stimulus. Hoshino and Zheng simulate a neural network of the auditory cortex to investigate neural basis for encoding and perception of vowel sounds.
Download or read book Scientific Information Bulletin written by and published by . This book was released on 1991 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Neuro Symbolic Artificial Intelligence The State of the Art written by P. Hitzler and published by IOS Press. This book was released on 2022-01-19 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neuro-symbolic AI is an emerging subfield of Artificial Intelligence that brings together two hitherto distinct approaches. ”Neuro” refers to the artificial neural networks prominent in machine learning, ”symbolic” refers to algorithmic processing on the level of meaningful symbols, prominent in knowledge representation. In the past, these two fields of AI have been largely separate, with very little crossover, but the so-called “third wave” of AI is now bringing them together. This book, Neuro-Symbolic Artificial Intelligence: The State of the Art, provides an overview of this development in AI. The two approaches differ significantly in terms of their strengths and weaknesses and, from a cognitive-science perspective, there is a question as to how a neural system can perform symbol manipulation, and how the representational differences between these two approaches can be bridged. The book presents 17 overview papers, all by authors who have made significant contributions in the past few years and starting with a historic overview first seen in 2016. With just seven months elapsed from invitation to authors to final copy, the book is as up-to-date as a published overview of this subject can be. Based on the editors’ own desire to understand the current state of the art, this book reflects the breadth and depth of the latest developments in neuro-symbolic AI, and will be of interest to students, researchers, and all those working in the field of Artificial Intelligence.
Download or read book Artificial Intelligence in the Age of Neural Networks and Brain Computing written by Robert Kozma and published by Academic Press. This book was released on 2023-10-11 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence in the Age of Neural Networks and Brain Computing, Second Edition demonstrates that present disruptive implications and applications of AI is a development of the unique attributes of neural networks, mainly machine learning, distributed architectures, massive parallel processing, black-box inference, intrinsic nonlinearity, and smart autonomous search engines. The book covers the major basic ideas of "brain-like computing" behind AI, provides a framework to deep learning, and launches novel and intriguing paradigms as possible future alternatives. The present success of AI-based commercial products proposed by top industry leaders, such as Google, IBM, Microsoft, Intel, and Amazon, can be interpreted using the perspective presented in this book by viewing the co-existence of a successful synergism among what is referred to as computational intelligence, natural intelligence, brain computing, and neural engineering. The new edition has been updated to include major new advances in the field, including many new chapters. - Developed from the 30th anniversary of the International Neural Network Society (INNS) and the 2017 International Joint Conference on Neural Networks (IJCNN - Authored by top experts, global field pioneers, and researchers working on cutting-edge applications in signal processing, speech recognition, games, adaptive control and decision-making - Edited by high-level academics and researchers in intelligent systems and neural networks - Includes all new chapters, including topics such as Frontiers in Recurrent Neural Network Research; Big Science, Team Science, Open Science for Neuroscience; A Model-Based Approach for Bridging Scales of Cortical Activity; A Cognitive Architecture for Object Recognition in Video; How Brain Architecture Leads to Abstract Thought; Deep Learning-Based Speech Separation and Advances in AI, Neural Networks
Download or read book Recent Developments and New Direction in Soft Computing Foundations and Applications written by Lotfi A. Zadeh and published by Springer. This book was released on 2016-05-25 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reports on advanced theories and cutting-edge applications in the field of soft computing. The individual chapters, written by leading researchers, are based on contributions presented during the 4th World Conference on Soft Computing, held May 25-27, 2014, in Berkeley. The book covers a wealth of key topics in soft computing, focusing on both fundamental aspects and applications. The former include fuzzy mathematics, type-2 fuzzy sets, evolutionary-based optimization, aggregation and neural networks, while the latter include soft computing in data analysis, image processing, decision-making, classification, series prediction, economics, control, and modeling. By providing readers with a timely, authoritative view on the field, and by discussing thought-provoking developments and challenges, the book will foster new research directions in the diverse areas of soft computing.
Download or read book Neural Information Processing and VLSI written by Bing J. Sheu and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 569 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural Information Processing and VLSI provides a unified treatment of this important subject for use in classrooms, industry, and research laboratories, in order to develop advanced artificial and biologically-inspired neural networks using compact analog and digital VLSI parallel processing techniques. Neural Information Processing and VLSI systematically presents various neural network paradigms, computing architectures, and the associated electronic/optical implementations using efficient VLSI design methodologies. Conventional digital machines cannot perform computationally-intensive tasks with satisfactory performance in such areas as intelligent perception, including visual and auditory signal processing, recognition, understanding, and logical reasoning (where the human being and even a small living animal can do a superb job). Recent research advances in artificial and biological neural networks have established an important foundation for high-performance information processing with more efficient use of computing resources. The secret lies in the design optimization at various levels of computing and communication of intelligent machines. Each neural network system consists of massively paralleled and distributed signal processors with every processor performing very simple operations, thus consuming little power. Large computational capabilities of these systems in the range of some hundred giga to several tera operations per second are derived from collectively parallel processing and efficient data routing, through well-structured interconnection networks. Deep-submicron very large-scale integration (VLSI) technologies can integrate tens of millions of transistors in a single silicon chip for complex signal processing and information manipulation. The book is suitable for those interested in efficient neurocomputing as well as those curious about neural network system applications. It has been especially prepared for use as a text for advanced undergraduate and first year graduate students, and is an excellent reference book for researchers and scientists working in the fields covered.
Download or read book Neurocomputers and Attention Connectionism and neurocomputers written by Arun V. Holden and published by Manchester University Press. This book was released on 1991 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Advances in Neural Computation Machine Learning and Cognitive Research III written by Boris Kryzhanovsky and published by Springer Nature. This book was released on 2019-09-03 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes new theories and applications of artificial neural networks, with a special focus on answering questions in neuroscience, biology and biophysics and cognitive research. It covers a wide range of methods and technologies, including deep neural networks, large scale neural models, brain computer interface, signal processing methods, as well as models of perception, studies on emotion recognition, self-organization and many more. The book includes both selected and invited papers presented at the XXI International Conference on Neuroinformatics, held on October 7-11, 2019, in Dolgoprudny, a town in Moscow region, Russia.
Download or read book The Elements of Style written by William Strunk Jr. and published by Arcturus Publishing. This book was released on 2023-10-01 with total page 70 pages. Available in PDF, EPUB and Kindle. Book excerpt: First published in 1918, William Strunk Jr.'s The Elements of Style is a guide to writing in American English. The boolk outlines eight "elementary rules of usage", ten "elementary principles of composition", "a few matters of form", a list of 49 "words and expressions commonly misused", and a list of 57 "words often misspelled". A later edition, enhanced by E B White, was named by Time magazine in 2011 as one of the 100 best and most influential books written in English since 1923.
Download or read book Advances in Neural Networks ISNN 2006 written by Jun Wang and published by Springer Science & Business Media. This book was released on 2006-05-11 with total page 1429 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is Volume III of a three volume set constituting the refereed proceedings of the Third International Symposium on Neural Networks, ISNN 2006. 616 revised papers are organized in topical sections on neurobiological analysis, theoretical analysis, neurodynamic optimization, learning algorithms, model design, kernel methods, data preprocessing, pattern classification, computer vision, image and signal processing, system modeling, robotic systems, transportation systems, communication networks, information security, fault detection, financial analysis, bioinformatics, biomedical and industrial applications, and more.
Download or read book Mathematics Advances in Research and Application 2012 Edition written by and published by ScholarlyEditions. This book was released on 2012-12-26 with total page 1637 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics—Advances in Research and Application: 2012 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Mathematics. The editors have built Mathematics—Advances in Research and Application: 2012 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Mathematics in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Mathematics—Advances in Research and Application: 2012 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
Download or read book Advances in Pattern Recognition ICAPR 2001 written by Sameer Singh and published by Springer. This book was released on 2003-06-29 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: The paper is organized as follows: In section 2, we describe the no- orientation-discontinuity interfering model based on a Gaussian stochastic model in analyzing the properties of the interfering strokes. In section 3, we describe the improved canny edge detector with an ed- orientation constraint to detect the edges and recover the weak ones of the foreground words and characters; In section 4, we illustrate, discuss and evaluate the experimental results of the proposed method, demonstrating that our algorithm significantly improves the segmentation quality; Section 5 concludes this paper. 2. The norm-orientation-discontinuity interfering stroke model Figure 2 shows three typical samples of original image segments from the original documents and their magnitude of the detected edges respectively. The magnitude of the gradient is converted into the gray level value. The darker the edge is, the larger is the gradient magnitude. It is obvious that the topmost strong edges correspond to foreground edges. It should be noted that, while usually, the foreground writing appears darker than the background image, as shown in sample image Figure 2(a), there are cases where the foreground and background have similar intensities as shown in Figure 2(b), or worst still, the background is more prominent than the foreground as in Figure 2(c). So using only the intensity value is not enough to differentiate the foreground from the background. (a) (b) (c) (d) (e) (f)
Download or read book Advances in Neural Networks ISNN 2011 written by Derong Liu and published by Springer. This book was released on 2011-05-20 with total page 667 pages. Available in PDF, EPUB and Kindle. Book excerpt: The three-volume set LNCS 6675, 6676 and 6677 constitutes the refereed proceedings of the 8th International Symposium on Neural Networks, ISNN 2011, held in Guilin, China, in May/June 2011. The total of 215 papers presented in all three volumes were carefully reviewed and selected from 651 submissions. The contributions are structured in topical sections on computational neuroscience and cognitive science; neurodynamics and complex systems; stability and convergence analysis; neural network models; supervised learning and unsupervised learning; kernel methods and support vector machines; mixture models and clustering; visual perception and pattern recognition; motion, tracking and object recognition; natural scene analysis and speech recognition; neuromorphic hardware, fuzzy neural networks and robotics; multi-agent systems and adaptive dynamic programming; reinforcement learning and decision making; action and motor control; adaptive and hybrid intelligent systems; neuroinformatics and bioinformatics; information retrieval; data mining and knowledge discovery; and natural language processing.
Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1992 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Geophysical Applications of Artificial Neural Networks and Fuzzy Logic written by W. Sandham and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: The past fifteen years has witnessed an explosive growth in the fundamental research and applications of artificial neural networks (ANNs) and fuzzy logic (FL). The main impetus behind this growth has been the ability of such methods to offer solutions not amenable to conventional techniques, particularly in application domains involving pattern recognition, prediction and control. Although the origins of ANNs and FL may be traced back to the 1940s and 1960s, respectively, the most rapid progress has only been achieved in the last fifteen years. This has been due to significant theoretical advances in our understanding of ANNs and FL, complemented by major technological developments in high-speed computing. In geophysics, ANNs and FL have enjoyed significant success and are now employed routinely in the following areas (amongst others): 1. Exploration Seismology. (a) Seismic data processing (trace editing; first break picking; deconvolution and multiple suppression; wavelet estimation; velocity analysis; noise identification/reduction; statics analysis; dataset matching/prediction, attenuation), (b) AVO analysis, (c) Chimneys, (d) Compression I dimensionality reduction, (e) Shear-wave analysis, (f) Interpretation (event tracking; lithology prediction and well-log analysis; prospect appraisal; hydrocarbon prediction; inversion; reservoir characterisation; quality assessment; tomography). 2. Earthquake Seismology and Subterranean Nuclear Explosions. 3. Mineral Exploration. 4. Electromagnetic I Potential Field Exploration. (a) Electromagnetic methods, (b) Potential field methods, (c) Ground penetrating radar, (d) Remote sensing, (e) inversion.