Download or read book Neural Networks for Pattern Recognition written by Christopher M. Bishop and published by Oxford University Press. This book was released on 1995-11-23 with total page 501 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical pattern recognition; Probability density estimation; Single-layer networks; The multi-layer perceptron; Radial basis functions; Error functions; Parameter optimization algorithms; Pre-processing and feature extraction; Learning and generalization; Bayesian techniques; Appendix; References; Index.
Download or read book Pattern Recognition and Neural Networks written by Brian D. Ripley and published by Cambridge University Press. This book was released on 2007 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 1996 book explains the statistical framework for pattern recognition and machine learning, now in paperback.
Download or read book Pattern Recognition Using Neural Networks written by Carl G. Looney and published by Oxford University Press on Demand. This book was released on 1997 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pattern recognizers evolve across the sections into perceptrons, a layer of perceptrons, multiple-layered perceptrons, functional link nets, and radial basis function networks. Other networks covered in the process are learning vector quantization networks, self-organizing maps, and recursive neural networks. Backpropagation is derived in complete detail for one and two hidden layers for both unipolar and bipolar sigmoid activation functions.
Download or read book Pattern Recognition with Neural Networks in C written by Abhijit S. Pandya and published by CRC Press. This book was released on 1995-10-17 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: The addition of artificial neural network computing to traditional pattern recognition has given rise to a new, different, and more powerful methodology that is presented in this interesting book. This is a practical guide to the application of artificial neural networks. Geared toward the practitioner, Pattern Recognition with Neural Networks in C++ covers pattern classification and neural network approaches within the same framework. Through the book's presentation of underlying theory and numerous practical examples, readers gain an understanding that will allow them to make judicious design choices rendering neural application predictable and effective. The book provides an intuitive explanation of each method for each network paradigm. This discussion is supported by a rigorous mathematical approach where necessary. C++ has emerged as a rich and descriptive means by which concepts, models, or algorithms can be precisely described. For many of the neural network models discussed, C++ programs are presented for the actual implementation. Pictorial diagrams and in-depth discussions explain each topic. Necessary derivative steps for the mathematical models are included so that readers can incorporate new ideas into their programs as the field advances with new developments. For each approach, the authors clearly state the known theoretical results, the known tendencies of the approach, and their recommendations for getting the best results from the method. The material covered in the book is accessible to working engineers with little or no explicit background in neural networks. However, the material is presented in sufficient depth so that those with prior knowledge will find this book beneficial. Pattern Recognition with Neural Networks in C++ is also suitable for courses in neural networks at an advanced undergraduate or graduate level. This book is valuable for academic as well as practical research.
Download or read book Adaptive Pattern Recognition and Neural Networks written by Yoh-Han Pao and published by Addison Wesley Publishing Company. This book was released on 1989 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: A coherent introduction to the basic concepts of pattern recognition, incorporating recent advances from AI, neurobiology, engineering, and other disciplines. Treats specifically the implementation of adaptive pattern recognition to neural networks. Annotation copyright Book News, Inc. Portland, Or.
Download or read book Information Security and Assurance written by Samir Kumar Bandyopadhyay and published by Springer Science & Business Media. This book was released on 2010-06-09 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Science and Technology, Advanced Communication and Networking, Information Security and Assurance, Ubiquitous Computing and Multimedia Appli- tions are conferences that attract many academic and industry professionals. The goal of these co-located conferences is to bring together researchers from academia and industry as well as practitioners to share ideas, problems and solutions relating to the multifaceted aspects of advanced science and technology, advanced communication and networking, information security and assurance, ubiquitous computing and m- timedia applications. This co-located event included the following conferences: AST 2010 (The second International Conference on Advanced Science and Technology), ACN 2010 (The second International Conference on Advanced Communication and Networking), ISA 2010 (The 4th International Conference on Information Security and Assurance) and UCMA 2010 (The 2010 International Conference on Ubiquitous Computing and Multimedia Applications). We would like to express our gratitude to all of the authors of submitted papers and to all attendees, for their contributions and participation. We believe in the need for continuing this undertaking in the future. We acknowledge the great effort of all the Chairs and the members of advisory boards and Program Committees of the above-listed events, who selected 15% of over 1,000 submissions, following a rigorous peer-review process. Special thanks go to SERSC (Science & Engineering Research Support soCiety) for supporting these - located conferences.
Download or read book Process Neural Networks written by Xingui He and published by Springer Science & Business Media. This book was released on 2010-07-05 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the first time, this book sets forth the concept and model for a process neural network. You’ll discover how a process neural network expands the mapping relationship between the input and output of traditional neural networks and greatly enhances the expression capability of artificial neural networks. Detailed illustrations help you visualize information processing flow and the mapping relationship between inputs and outputs.
Download or read book Computational Intelligence for Pattern Recognition written by Witold Pedrycz and published by Springer. This book was released on 2018-04-30 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents a comprehensive and up-to-date review of fuzzy pattern recognition. It carefully discusses a range of methodological and algorithmic issues, as well as implementations and case studies, and identifies the best design practices, assesses business models and practices of pattern recognition in real-world applications in industry, health care, administration, and business. Since the inception of fuzzy sets, fuzzy pattern recognition with its methodology, algorithms, and applications, has offered new insights into the principles and practice of pattern classification. Computational intelligence (CI) establishes a comprehensive framework aimed at fostering the paradigm of pattern recognition. The collection of contributions included in this book offers a representative overview of the advances in the area, with timely, in-depth and comprehensive material on the conceptually appealing and practically sound methodology and practices of CI-based pattern recognition.
Download or read book Neural Network Systems Techniques and Applications written by and published by Academic Press. This book was released on 1998-02-09 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book emphasizes neural network structures for achieving practical and effective systems, and provides many examples. Practitioners, researchers, and students in industrial, manufacturing, electrical, mechanical,and production engineering will find this volume a unique and comprehensive reference source for diverse application methodologies. Control and Dynamic Systems covers the important topics of highly effective Orthogonal Activation Function Based Neural Network System Architecture, multi-layer recurrent neural networks for synthesizing and implementing real-time linear control,adaptive control of unknown nonlinear dynamical systems, Optimal Tracking Neural Controller techniques, a consideration of unified approximation theory and applications, techniques for the determination of multi-variable nonlinear model structures for dynamic systems with a detailed treatment of relevant system model input determination, High Order Neural Networks and Recurrent High Order Neural Networks, High Order Moment Neural Array Systems, Online Learning Neural Network controllers, and Radial Bias Function techniques. Coverage includes: - Orthogonal Activation Function Based Neural Network System Architecture (OAFNN) - Multilayer recurrent neural networks for synthesizing and implementing real-time linear control - Adaptive control of unknown nonlinear dynamical systems - Optimal Tracking Neural Controller techniques - Consideration of unified approximation theory and applications - Techniques for determining multivariable nonlinear model structures for dynamic systems, with a detailed treatment of relevant system model input determination
Download or read book Neural Networks in Business written by Kate A. Smith and published by IGI Global. This book was released on 2003-01-01 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: "For professionals, students, and academics interested in applying neural networks to a variety of business applications, this reference book introduces the three most common neural network models and how they work. A wide range of business applications and a series of global case studies are presented to illustrate the neural network models provided. Each model or technique is discussed in detail and used to solve a business problem such as managing direct marketing, calculating foreign exchange rates, and improving cash flow forecasting."
Download or read book Pattern Recognition and Machine Learning written by Christopher M. Bishop and published by Springer. This book was released on 2016-08-23 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Download or read book Research Anthology on Artificial Neural Network Applications written by Management Association, Information Resources and published by IGI Global. This book was released on 2021-07-16 with total page 1575 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial neural networks (ANNs) present many benefits in analyzing complex data in a proficient manner. As an effective and efficient problem-solving method, ANNs are incredibly useful in many different fields. From education to medicine and banking to engineering, artificial neural networks are a growing phenomenon as more realize the plethora of uses and benefits they provide. Due to their complexity, it is vital for researchers to understand ANN capabilities in various fields. The Research Anthology on Artificial Neural Network Applications covers critical topics related to artificial neural networks and their multitude of applications in a number of diverse areas including medicine, finance, operations research, business, social media, security, and more. Covering everything from the applications and uses of artificial neural networks to deep learning and non-linear problems, this book is ideal for computer scientists, IT specialists, data scientists, technologists, business owners, engineers, government agencies, researchers, academicians, and students, as well as anyone who is interested in learning more about how artificial neural networks can be used across a wide range of fields.
Download or read book Neural Networks written by Gérard Dreyfus and published by Springer Science & Business Media. This book was released on 2005-11-25 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural networks represent a powerful data processing technique that has reached maturity and broad application. When clearly understood and appropriately used, they are a mandatory component in the toolbox of any engineer who wants make the best use of the available data, in order to build models, make predictions, mine data, recognize shapes or signals, etc. Ranging from theoretical foundations to real-life applications, this book is intended to provide engineers and researchers with clear methodologies for taking advantage of neural networks in industrial, financial or banking applications, many instances of which are presented in the book. For the benefit of readers wishing to gain deeper knowledge of the topics, the book features appendices that provide theoretical details for greater insight, and algorithmic details for efficient programming and implementation. The chapters have been written by experts and edited to present a coherent and comprehensive, yet not redundant, practically oriented introduction.
Download or read book Artificial Intelligence in the Age of Neural Networks and Brain Computing written by Robert Kozma and published by Academic Press. This book was released on 2023-10-11 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence in the Age of Neural Networks and Brain Computing, Second Edition demonstrates that present disruptive implications and applications of AI is a development of the unique attributes of neural networks, mainly machine learning, distributed architectures, massive parallel processing, black-box inference, intrinsic nonlinearity, and smart autonomous search engines. The book covers the major basic ideas of "brain-like computing" behind AI, provides a framework to deep learning, and launches novel and intriguing paradigms as possible future alternatives. The present success of AI-based commercial products proposed by top industry leaders, such as Google, IBM, Microsoft, Intel, and Amazon, can be interpreted using the perspective presented in this book by viewing the co-existence of a successful synergism among what is referred to as computational intelligence, natural intelligence, brain computing, and neural engineering. The new edition has been updated to include major new advances in the field, including many new chapters. - Developed from the 30th anniversary of the International Neural Network Society (INNS) and the 2017 International Joint Conference on Neural Networks (IJCNN - Authored by top experts, global field pioneers, and researchers working on cutting-edge applications in signal processing, speech recognition, games, adaptive control and decision-making - Edited by high-level academics and researchers in intelligent systems and neural networks - Includes all new chapters, including topics such as Frontiers in Recurrent Neural Network Research; Big Science, Team Science, Open Science for Neuroscience; A Model-Based Approach for Bridging Scales of Cortical Activity; A Cognitive Architecture for Object Recognition in Video; How Brain Architecture Leads to Abstract Thought; Deep Learning-Based Speech Separation and Advances in AI, Neural Networks
Download or read book Neural Networks Computational Models and Applications written by Huajin Tang and published by Springer Science & Business Media. This book was released on 2007-03-12 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural Networks: Computational Models and Applications presents important theoretical and practical issues in neural networks, including the learning algorithms of feed-forward neural networks, various dynamical properties of recurrent neural networks, winner-take-all networks and their applications in broad manifolds of computational intelligence: pattern recognition, uniform approximation, constrained optimization, NP-hard problems, and image segmentation. The book offers a compact, insightful understanding of the broad and rapidly growing neural networks domain.
Download or read book Handbook Of Pattern Recognition And Computer Vision 2nd Edition written by Chi Hau Chen and published by World Scientific. This book was released on 1999-03-12 with total page 1045 pages. Available in PDF, EPUB and Kindle. Book excerpt: The very significant advances in computer vision and pattern recognition and their applications in the last few years reflect the strong and growing interest in the field as well as the many opportunities and challenges it offers. The second edition of this handbook represents both the latest progress and updated knowledge in this dynamic field. The applications and technological issues are particularly emphasized in this edition to reflect the wide applicability of the field in many practical problems. To keep the book in a single volume, it is not possible to retain all chapters of the first edition. However, the chapters of both editions are well written for permanent reference. This indispensable handbook will continue to serve as an authoritative and comprehensive guide in the field.
Download or read book Handbook of Neural Computing Applications written by Alianna J. Maren and published by Academic Press. This book was released on 2014-05-10 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Neural Computing Applications is a collection of articles that deals with neural networks. Some papers review the biology of neural networks, their type and function (structure, dynamics, and learning) and compare a back-propagating perceptron with a Boltzmann machine, or a Hopfield network with a Brain-State-in-a-Box network. Other papers deal with specific neural network types, and also on selecting, configuring, and implementing neural networks. Other papers address specific applications including neurocontrol for the benefit of control engineers and for neural networks researchers. Other applications involve signal processing, spatio-temporal pattern recognition, medical diagnoses, fault diagnoses, robotics, business, data communications, data compression, and adaptive man-machine systems. One paper describes data compression and dimensionality reduction methods that have characteristics, such as high compression ratios to facilitate data storage, strong discrimination of novel data from baseline, rapid operation for software and hardware, as well as the ability to recognized loss of data during compression or reconstruction. The collection can prove helpful for programmers, computer engineers, computer technicians, and computer instructors dealing with many aspects of computers related to programming, hardware interface, networking, engineering or design.