EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Neural Interface Engineering

Download or read book Neural Interface Engineering written by Liang Guo and published by Springer Nature. This book was released on 2020-05-04 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive reference to major neural interfacing technologies used to transmit signals between the physical world and the nervous system for repairing, restoring and even augmenting body functions. The authors discuss the classic approaches for neural interfacing, the major challenges encountered, and recent, emerging techniques to mitigate these challenges for better chronic performances. Readers will benefit from this book’s unprecedented scope and depth of coverage on the technology of neural interfaces, the most critical component in any type of neural prostheses. Provides comprehensive coverage of major neural interfacing technologies; Reviews and discusses both classic and latest, emerging topics; Includes classification of technologies to provide an easy grasp of research and trends in the field.

Book Brain Machine Interface Engineering

Download or read book Brain Machine Interface Engineering written by Justin C. Sanchez and published by Morgan & Claypool Publishers. This book was released on 2007-12-01 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural interfaces are one of the most exciting emerging technologies to impact bioengineering and neuroscience because they enable an alternate communication channel linking directly the nervous system with man-made devices. This book reveals the essential engineering principles and signal processing tools for deriving control commands from bioelectric signals in large ensembles of neurons. The topics featured include analysis techniques for determining neural representation, modeling in motor systems, computing with neural spikes, and hardware implementation of neural interfaces. Beginning with an exploration of the historical developments that have led to the decoding of information from neural interfaces, this book compares the theory and performance of new neural engineering approaches for BMIs. Contents: Introduction to Neural Interfaces / Foundations of Neuronal Representations / Input-Outpur BMI Models / Regularization Techniques for BMI Models / Neural Decoding Using Generative BMI Models / Adaptive Algorithms for Point Processes / BMI Systems

Book Brain Machine Interface Engineering

Download or read book Brain Machine Interface Engineering written by Justin Sanchez and published by Springer Nature. This book was released on 2022-06-01 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural interfaces are one of the most exciting emerging technologies to impact bioengineering and neuroscience because they enable an alternate communication channel linking directly the nervous system with man-made devices. This book reveals the essential engineering principles and signal processing tools for deriving control commands from bioelectric signals in large ensembles of neurons. The topics featured include analysis techniques for determining neural representation, modeling in motor systems, computing with neural spikes, and hardware implementation of neural interfaces. Beginning with an exploration of the historical developments that have led to the decoding of information from neural interfaces, this book compares the theory and performance of new neural engineering approaches for BMIs. Contents: Introduction to Neural Interfaces / Foundations of Neuronal Representations / Input-Outpur BMI Models / Regularization Techniques for BMI Models / Neural Decoding Using Generative BMI Models / Adaptive Algorithms for Point Processes / BMI Systems

Book Neural Interface  Frontiers and Applications

Download or read book Neural Interface Frontiers and Applications written by Xiaoxiang Zheng and published by Springer Nature. This book was released on 2019-11-15 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the frontiers of neural interface technology, including hardware, software, neural decoding and encoding, control systems, and system integration. It also discusses applications for neuroprosthetics, neural diseases and neurorobotics, and the toolkits for basic neuroscience. A neural interface establishes a direct communication channel with the central or peripheral nervous system (CNS or PNS), and enables the nervous system to interact directly with the external devices. Recent advances in neuroscience and engineering are speeding up neural interface technology, paving the way for assisting, augmenting, repairing or restoring sensorimotor and other cognitive functions impaired due to neurological disease or trauma, and so improving the quality of life of those affected. Neural interfaces are now being explored in applications as diverse as rehabilitation, accessibility, gaming, education, recreation, robotics and human enhancement. Neural interfaces also represent a powerful tool to address fundamental questions in neuroscience. Recent decades have witnessed tremendous advances in the field, with a huge impact not only in the development of neuroprosthetics, but also in our basic understanding of brain function. Neural interface technology can be seen as a bridge across the traditional engineering and basic neuroscience. This book provides researchers, graduate and upper undergraduate students from a wide range of disciplines with a cutting-edge and comprehensive summary of neural interface engineering research.

Book Neural Engineering

Download or read book Neural Engineering written by Bin He and published by Springer Science & Business Media. This book was released on 2013-01-09 with total page 801 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural Engineering, 2nd Edition, contains reviews and discussions of contemporary and relevant topics by leading investigators in the field. It is intended to serve as a textbook at the graduate and advanced undergraduate level in a bioengineering curriculum. This principles and applications approach to neural engineering is essential reading for all academics, biomedical engineers, neuroscientists, neurophysiologists, and industry professionals wishing to take advantage of the latest and greatest in this emerging field.

Book Brain Computer Interfacing

Download or read book Brain Computer Interfacing written by Rajesh P. N. Rao and published by Cambridge University Press. This book was released on 2013-09-30 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: The idea of interfacing minds with machines has long captured the human imagination. Recent advances in neuroscience and engineering are making this a reality, opening the door to restoration and augmentation of human physical and mental capabilities. Medical applications such as cochlear implants for the deaf and neurally controlled prosthetic limbs for the paralyzed are becoming almost commonplace. Brain-computer interfaces (BCIs) are also increasingly being used in security, lie detection, alertness monitoring, telepresence, gaming, education, art, and human augmentation. This introduction to the field is designed as a textbook for upper-level undergraduate and first-year graduate courses in neural engineering or brain-computer interfacing for students from a wide range of disciplines. It can also be used for self-study and as a reference by neuroscientists, computer scientists, engineers, and medical practitioners. Key features include questions and exercises in each chapter and a supporting website.

Book Control  Computer Engineering and Neuroscience

Download or read book Control Computer Engineering and Neuroscience written by Szczepan Paszkiel and published by Springer Nature. This book was released on 2021-03-29 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the proceedings of the 4th International Scientific Conference IC BCI 2021 Opole, Poland. The event was held at Opole University of Technology in Poland on 21 September 2021. Since 2014, the conference has taken place every two years at the University’s Faculty of Electrical Engineering, Automatic Control and Informatics. The conference focused on the issues relating to new trends in modern brain–computer interfaces (BCI) and control engineering, including neurobiology–neurosurgery, cognitive science–bioethics, biophysics–biochemistry, modeling–neuroinformatics, BCI technology, biomedical engineering, control and robotics, computer engineering and neurorehabilitation–biofeedback.

Book Neural Interfacing

    Book Details:
  • Author : Thomas D. Coates
  • Publisher : Morgan & Claypool Publishers
  • Release : 2008
  • ISBN : 1598296809
  • Pages : 113 pages

Download or read book Neural Interfacing written by Thomas D. Coates and published by Morgan & Claypool Publishers. This book was released on 2008 with total page 113 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past 50 years there has been an explosion of interest in the development of technologies whose end goal is to connect the human brain and/or nervous system directly to computers. Once the subject of science fiction, the technologies necessary to accomplish this goal are rapidly becoming reality. In laboratories around the globe, research is being undertaken to restore function to the physically disabled, to replace areas of the brain damaged by disease or trauma and to augment human abilities. Building neural interfaces and neuro-prosthetics relies on a diverse array of disciplines such as neuroscience, engineering, medicine and microfabrication just to name a few. This book presents a short history of neural interfacing (N.I.) research and introduces the reader to some of the current efforts to develop neural prostheses. The book is intended as an introduction for the college freshman or others wishing to learn more about the field. A resource guide is included for students along with a list of laboratories conducting N.I. research and universities with N.I. related tracks of study. Table of Contents: Neural Interfaces Past and Present / Current Neuroprosthesis Research / Conclusion / Resources for Students

Book Principles of Electrical Neural Interfacing

Download or read book Principles of Electrical Neural Interfacing written by Liang Guo and published by Springer Nature. This book was released on 2021-09-29 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook fills a gap to supply students with the fundamental principles and tools they need to perform the quantitative analyses of the neuroelectrophysiological approaches, including both conventional and emerging ones, prevalently used in neuroscience research and neuroprosthetics. The content grows out of a course on Neuroengineering and Neuroprosthetics, which the author has taught already several times. The key problems the author addresses include (1) the universal operating mechanisms of neuroelectrophysiological approaches, (2) proper configuration of each approach, and (3) proper interpretation of the resulting signals. Efforts are made both to extract the universal principles underlying this common class of approaches and discern the unique properties of each individual approach. To address these important problems, equivalent electrical circuit modeling and signal analysis are used to unravel the functioning mechanisms and principles and provide sound interpretations to the associated signals and phenomena. This book aims to derive analytical solutions to these equivalent circuits, which can offer clear and complete mechanistic insights to the underlying biophysics.

Book Handbook of Neural Engineering

Download or read book Handbook of Neural Engineering written by Metin Akay and published by John Wiley & Sons. This book was released on 2007-01-09 with total page 681 pages. Available in PDF, EPUB and Kindle. Book excerpt: An important new work establishing a foundation for future developments in neural engineering The Handbook of Neural Engineering provides theoretical foundations in computational neural science and engineering and current applications in wearable and implantable neural sensors/probes. Inside, leading experts from diverse disciplinary groups representing academia, industry, and private and government organizations present peer-reviewed contributions on the brain-computer interface, nano-neural engineering, neural prostheses, imaging the brain, neural signal processing, the brain, and neurons. The Handbook of Neural Engineering covers: Neural signal and image processing--the analysis and modeling of neural activity and EEG-related activities using the nonlinear and nonstationary analysis methods, including the chaos, fractal, and time-frequency and time-scale analysis methods--and how to measure functional, physiological, and metabolic activities in the human brain using current and emerging medical imaging technologies Neuro-nanotechnology, artificial implants, and neural prosthesis--the design of multi-electrode arrays to study how the neurons of human and animals encode stimuli, the evaluation of functional changes in neural networks after stroke and spinal cord injuries, and improvements in therapeutic applications using neural prostheses Neurorobotics and neural rehabilitation engineering--the recent developments in the areas of biorobotic system, biosonar head, limb kinematics, and robot-assisted activity to improve the treatment of elderly subjects at the hospital and home, as well as the interactions of the neuron chip, neural information processing, perception and neural dynamics, learning memory and behavior, biological neural networks, and neural control

Book High Density Integrated Electrocortical Neural Interfaces

Download or read book High Density Integrated Electrocortical Neural Interfaces written by Sohmyung Ha and published by Academic Press. This book was released on 2019-08-03 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: High-Density Integrated Electrocortical Neural Interfaces provides a basic understanding, design strategies and implementation applications for electrocortical neural interfaces with a focus on integrated circuit design technologies. A wide variety of topics associated with the design and application of electrocortical neural implants are covered in this book. Written by leading experts in the field— Dr. Sohmyung Ha, Dr. Chul Kim, Dr. Patrick P. Mercier and Dr. Gert Cauwenberghs —the book discusses basic principles and practical design strategies of electrocorticography, electrode interfaces, signal acquisition, power delivery, data communication, and stimulation. In addition, an overview and critical review of the state-of-the-art research is included. These methodologies present a path towards the development of minimally invasive brain-computer interfaces capable of resolving microscale neural activity with wide-ranging coverage across the cortical surface. Written by leading researchers in electrocorticography in brain-computer interfaces Offers a unique focus on neural interface circuit design, from electrode to interface, circuit, powering, communication and encapsulation Covers the newest ECoG interface systems and electrode interfaces for ECoG and biopotential sensing

Book Targeted Muscle Reinnervation

Download or read book Targeted Muscle Reinnervation written by Todd A. Kuiken and published by Taylor & Francis. This book was released on 2013-07-23 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: Implement TMR with Your Patients and Improve Their Quality of LifeDeveloped by Dr. Todd A. Kuiken and Dr. Gregory A. Dumanian, targeted muscle reinnervation (TMR) is a new approach to accessing motor control signals from peripheral nerves after amputation and providing sensory feedback to prosthesis users. This practical approach has many advantage

Book Introduction to Neural Engineering for Motor Rehabilitation

Download or read book Introduction to Neural Engineering for Motor Rehabilitation written by Dario Farina and published by John Wiley & Sons. This book was released on 2013-05-21 with total page 661 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural engineering is a discipline that uses engineering techniques to understand, repair, replace, enhance, or treat diseases of neural systems. Currently, no book other than this one covers this broad range of topics within motor rehabilitation technology. With a focus on cutting edge technology, it describes state-of-the-art methods within this field, from brain-computer interfaces to spinal and cortical plasticity. Touching on electrode design, signal processing, the neurophysiology of movement, robotics, and much more, this innovative volume collects the latest information for a wide range of readers working in biomedical engineering.

Book Neural Interface Engineering for Electrophysiology Application

Download or read book Neural Interface Engineering for Electrophysiology Application written by Hyungsoo Kim and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The brain is a wondrous and complex organ, a biological machine forged by the evolutionary forces of nature. The human brain contains 100 billion neurons and each neuron is connected by synapses to several thousand other neurons. Connected neurons work together to produce perceptions and sensations, memories and emotions, physical movements and abstract constructs. The neurons communicate by means of electricity that passes along and across their cellular membrane. Much of what is known about brain physiology is through the measurement of this electrical activity, either with relatively large electrodes placed on the scalp or tiny microelectrodes inserted into the brain tissue itself. At the finer end of this scale, scientists have discovered much about the way individual neurons extract sensory information, adapt their behavior to form a memory, and convey signals to other regions of the brain. However, it has long been recognized that the brain operates on a global scale, through the collective behavior and interaction of its neural units1. Information is processed in several regions of the brain simultaneously, and the activity of neighboring neurons can be quite different from one another. By one analogy, the attempt to assess brain function by observing a single neuron is like looking at the output of one transistor to learn how a computer works. Thus, the recording of many neurons simultaneously is necessary to truly reveal the mechanisms of the brain2. In recent decades, a variety of recording techniques have been developed for a neural interface such as electroencephalography (EEG), magneto-encephalography (MEG), electrocorticography (ECOG), local field potential (LFP) recordings, micro-electrode array (MEA) and peripheral nerve interfaces (PNIs) to the micron-level precision required for multi-neuron recording. Their small size allows many recording channels to be placed onto one device. One of the goals of neural interface research is to create a seamless connection between the nervous system and the neuroprostheses either by stimulating or by recording from neural tissue to restore or substitute function for individuals with neurological deficits or disabilities. Hence, significant amount of scientific and technological efforts have been devoted to develop neural interfaces that link the nervous system with robotic prosthetic devices. The creation of a novel neural interface is essential for developing the full potential of advanced prosthesis technology required to replace lost limbs. Additionally, meticulous studies of a single neuron and between neurons utilizing the neural interface technology should be made to elucidate fundamental biological phenomena such as cellular processes and heterogeneities. Particularly, an electrophysiological study of neural networks can provide knowledge to unravel the functions of brain. When fundamental research about molecular and cellular mechanisms of a single neuron and electrophysiological studies using neural interfaces on both the central and peripheral nervous systems are done together, it has a synergistic effect on neural interface technology. The research and methodologies described in this dissertation stem from our research group's efforts to optimize the design and expand the applications of neural interfaces. The dissertation is organized into four chapters. Chapter 1 is a review of neural interface technology and study of neural signal detection. This chapter provides a foundation for Chapter 2 and 3. Chapter 2 is a study of a neural interface as cellular level research. We present an advanced single-neuronal cell culture and monitoring platform using a fully transparent microfluidic dielectrophoresis (DEP) device for unabated monitoring of neuronal cell development and function. The device is mounted inside a sealed incubation chamber to ensure improved homeostatic conditions and reduced contamination risk. Consequently, we successfully trap and culture single neurons on a desired location and monitor their growth process over a week. Chapter 3 deals with the specific application of PNIs to the sciatic nerve of a rat as a nervous system-level research. We developed novel devices, "cuff and sieve electrodes" (CASE), that integrate microfabricated cuff and sieve electrodes capable of broad (via cuff) and precise (via sieve) selectivity to increase the strengths and simultaneously decrease the weaknesses of traditional electrode designs. We performed terminal device implantations in a rat sciatic transection and repair model to test the capacity of the CASE interface. The sciatic nerve was stimulated by the sieve portion of the CASE electrode and somatosensory evoked potentials were recorded from the somatosensory cortex via micro-eletrocorticography. The ability to elicit cortical responses from sciatic nerve stimulation demonstrates the proof of concept for both the implantation and chronic monitoring of CASE interfaces for innovative prosthetic control. Lastly, in Chapter 4, I will identify areas in which further investigation is needed and propose future directions of both cellular and system-level neural interface

Book Handbook of Neurophotonics

Download or read book Handbook of Neurophotonics written by Francesco S. Pavone and published by CRC Press. This book was released on 2020-05-10 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Neurophotonics provides a dedicated overview of neurophotonics, covering the use of advanced optical technologies to record, stimulate, and control the activity of the brain, yielding new insight and advantages over conventional tools due to the adaptability and non-invasive nature of light. Including 32 colour figures, this book addresses functional studies of neurovascular signaling, metabolism, electrical excitation, and hemodynamics, as well as clinical applications for imaging and manipulating brain structure and function. The unifying theme throughout is not only to highlight the technology, but to show how these novel methods are becoming critical to breakthroughs that will lead to advances in our ability to manage and treat human diseases of the brain. Key Features: Provides the first dedicated book on state-of-the-art optical techniques for sensing and imaging across at the cellular, molecular, network, and whole brain levels. Highlights how the methods are used for measurement, control, and tracking of molecular events in live neuronal cells, both in basic research and clinical practice. Covers the entire spectrum of approaches, from optogenetics to functional methods, photostimulation, optical dissection, multiscale imaging, microscopy, and structural imaging. Includes chapters that show use of voltage-sensitive dye imaging, hemodynamic imaging, multiphoton imaging, temporal multiplexing, multiplane microscopy, optoacoustic imaging, near-infrared spectroscopy, and miniature neuroimaging devices to track cortical brain activity.

Book Handbook of Neuroengineering

Download or read book Handbook of Neuroengineering written by Nitish V. Thakor and published by Springer Nature. This book was released on 2023-02-02 with total page 3686 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Handbook serves as an authoritative reference book in the field of Neuroengineering. Neuroengineering is a very exciting field that is rapidly getting established as core subject matter for research and education. The Neuroengineering field has also produced an impressive array of industry products and clinical applications. It also serves as a reference book for graduate students, research scholars and teachers. Selected sections or a compendium of chapters may be used as “reference book” for a one or two semester graduate course in Biomedical Engineering. Some academicians will construct a “textbook” out of selected sections or chapters. The Handbook is also meant as a state-of-the-art volume for researchers. Due to its comprehensive coverage, researchers in one field covered by a certain section of the Handbook would find other sections valuable sources of cross-reference for information and fertilization of interdisciplinary ideas. Industry researchers as well as clinicians using neurotechnologies will find the Handbook a single source for foundation and state-of-the-art applications in the field of Neuroengineering. Regulatory agencies, entrepreneurs, investors and legal experts can use the Handbook as a reference for their professional work as well.​

Book Ultra Low Power Integrated Circuit Design for Wireless Neural Interfaces

Download or read book Ultra Low Power Integrated Circuit Design for Wireless Neural Interfaces written by Jeremy Holleman and published by Springer Science & Business Media. This book was released on 2010-10-29 with total page 123 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book will describe ultra low-power, integrated circuits and systems designed for the emerging field of neural signal recording and processing, and wireless communication. Since neural interfaces are typically implanted, their operation is highly energy-constrained. This book introduces concepts and theory that allow circuit operation approaching the fundamental limits. Design examples and measurements of real systems are provided. The book will describe circuit designs for all of the critical components of a neural recording system, including: Amplifiers which utilize new techniques to improve the trade-off between good noise performance and low power consumption. Analog and mixed-signal circuits which implement signal processing tasks specific to the neural recording application: Detection of neural spikes Extraction of features that describe the spikes Clustering, a machine learning technique for sorting spikes Weak-inversion operation of analog-domain transistors, allowing processing circuits that reduce the requirements for analog-digital conversion and allow low system-level power consumption. Highly-integrated, sub-mW wireless transmitter designed for the Medical Implant Communications Service (MICS) and ISM bands.