EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Advances in Neural Information Processing Systems 10

Download or read book Advances in Neural Information Processing Systems 10 written by Michael I. Jordan and published by MIT Press. This book was released on 1998 with total page 1114 pages. Available in PDF, EPUB and Kindle. Book excerpt: The annual conference on Neural Information Processing Systems (NIPS) is the flagship conference on neural computation. These proceedings contain all of the papers that were presented.

Book The Role of Synaptic Tagging and Capture for Memory Dynamics in Spiking Neural Networks

Download or read book The Role of Synaptic Tagging and Capture for Memory Dynamics in Spiking Neural Networks written by Jannik Luboeinski and published by . This book was released on 2021-09-02 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: Memory serves to process and store information about experiences such that this information can be used in future situations. The transfer from transient storage into long-term memory, which retains information for hours, days, and even years, is called consolidation. In brains, information is primarily stored via alteration of synapses, so-called synaptic plasticity. While these changes are at first in a transient early phase, they can be transferred to a late phase, meaning that they become stabilized over the course of several hours. This stabilization has been explained by so-called synaptic tagging and capture (STC) mechanisms. To store and recall memory representations, emergent dynamics arise from the synaptic structure of recurrent networks of neurons. This happens through so-called cell assemblies, which feature particularly strong synapses. It has been proposed that the stabilization of such cell assemblies by STC corresponds to so-called synaptic consolidation, which is observed in humans and other animals in the first hours after acquiring a new memory. The exact connection between the physiological mechanisms of STC and memory consolidation remains, however, unclear. It is equally unknown which influence STC mechanisms exert on further cognitive functions that guide behavior. On timescales of minutes to hours (that means, the timescales of STC) such functions include memory improvement, modification of memories, interference and enhancement of similar memories, and transient priming of certain memories. Thus, diverse memory dynamics may be linked to STC, which can be investigated by employing theoretical methods based on experimental data from the neuronal and the behavioral level. In this thesis, we present a theoretical model of STC-based memory consolidation in recurrent networks of spiking neurons, which are particularly suited to reproduce biologically realistic dynamics. Furthermore, we combine the STC mechanisms with calcium dynamics, which have been found to guide the major processes of early-phase synaptic plasticity in vivo. In three included research articles as well as additional sections, we develop this model and investigate how it can account for a variety of behavioral effects. We find that the model enables the robust implementation of the cognitive memory functions mentioned above. The main steps to this are: 1. demonstrating the formation, consolidation, and improvement of memories represented by cell assemblies, 2. showing that neuromodulator-dependent STC can retroactively control whether information is stored in a temporal or rate-based neural code, and 3. examining interaction of multiple cell assemblies with transient and attractor dynamics in different organizational paradigms. In summary, we demonstrate several ways by which STC controls the late-phase synaptic structure of cell assemblies. Linking these structures to functional dynamics, we show that our STC-based model implements functionality that can be related to long-term memory. Thereby, we provide a basis for the mechanistic explanation of various neuropsychological effects. Keywords: synaptic plasticity; synaptic tagging and capture; spiking recurrent neural networks; memory consolidation; long-term memory

Book An Introduction to Neural Information Processing

Download or read book An Introduction to Neural Information Processing written by Peiji Liang and published by Springer. This book was released on 2015-12-22 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of neural information processing research, which is one of the most important branches of neuroscience today. Neural information processing is an interdisciplinary subject, and the merging interaction between neuroscience and mathematics, physics, as well as information science plays a key role in the development of this field. This book begins with the anatomy of the central nervous system, followed by an introduction to various information processing models at different levels. The authors all have extensive experience in mathematics, physics and biomedical engineering, and have worked in this multidisciplinary area for a number of years. They present classical examples of how the pioneers in this field used theoretical analysis, mathematical modeling and computer simulation to solve neurobiological problems, and share their experiences and lessons learned. The book is intended for researchers and students with a mathematics, physics or informatics background who are interested in brain research and keen to understand the necessary neurobiology and how they can use their specialties to address neurobiological problems. It is also provides inspiration for neuroscience students who are interested in learning how to use mathematics, physics or informatics approaches to solve problems in their field.

Book Biophysics of Computation

    Book Details:
  • Author : Christof Koch
  • Publisher : Oxford University Press
  • Release : 2004-10-28
  • ISBN : 0190292857
  • Pages : 588 pages

Download or read book Biophysics of Computation written by Christof Koch and published by Oxford University Press. This book was released on 2004-10-28 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural network research often builds on the fiction that neurons are simple linear threshold units, completely neglecting the highly dynamic and complex nature of synapses, dendrites, and voltage-dependent ionic currents. Biophysics of Computation: Information Processing in Single Neurons challenges this notion, using richly detailed experimental and theoretical findings from cellular biophysics to explain the repertoire of computational functions available to single neurons. The author shows how individual nerve cells can multiply, integrate, or delay synaptic inputs and how information can be encoded in the voltage across the membrane, in the intracellular calcium concentration, or in the timing of individual spikes. Key topics covered include the linear cable equation; cable theory as applied to passive dendritic trees and dendritic spines; chemical and electrical synapses and how to treat them from a computational point of view; nonlinear interactions of synaptic input in passive and active dendritic trees; the Hodgkin-Huxley model of action potential generation and propagation; phase space analysis; linking stochastic ionic channels to membrane-dependent currents; calcium and potassium currents and their role in information processing; the role of diffusion, buffering and binding of calcium, and other messenger systems in information processing and storage; short- and long-term models of synaptic plasticity; simplified models of single cells; stochastic aspects of neuronal firing; the nature of the neuronal code; and unconventional models of sub-cellular computation. Biophysics of Computation: Information Processing in Single Neurons serves as an ideal text for advanced undergraduate and graduate courses in cellular biophysics, computational neuroscience, and neural networks, and will appeal to students and professionals in neuroscience, electrical and computer engineering, and physics.

Book Advances in Neural Information Processing Systems 11

Download or read book Advances in Neural Information Processing Systems 11 written by Michael S. Kearns and published by MIT Press. This book was released on 1999 with total page 1122 pages. Available in PDF, EPUB and Kindle. Book excerpt: The annual conference on Neural Information Processing Systems (NIPS) is the flagship conference on neural computation. It draws preeminent academic researchers from around the world and is widely considered to be a showcase conference for new developments in network algorithms and architectures. The broad range of interdisciplinary research areas represented includes computer science, neuroscience, statistics, physics, cognitive science, and many branches of engineering, including signal processing and control theory. Only about 30 percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. These proceedings contain all of the papers that were presented.

Book Modeling and Analyzing Neural Dynamics and Information Processing Over Multiple Time Scales

Download or read book Modeling and Analyzing Neural Dynamics and Information Processing Over Multiple Time Scales written by Sensen Liu and published by . This book was released on 2018 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: The brain produces complex patterns of activity that occur at different spatio-temporal scales. One of the fundamental questions in neuroscience is to understand how exactly these dynamics are related to brain function, for example our ability to extract and process information from the sensory periphery. This dissertation presents two distinct lines of inquiry related to different aspects of this high-level question. In the first part of the dissertation, we study the dynamics of burst suppression, a phenomenon in which brain electrical activity exhibits bistable dynamics. Burst suppression is frequently encountered in individuals who are rendered unconscious through general anesthesia and is thus a brain state associated with profound reductions in awareness and, presumably, information processing. Our primary contribution in this part of the dissertation is a new type of dynamical systems model whose analysis provides insights into the mechanistic underpinnings of burst suppression. In particular, the model yields explanations for the emergence of the characteristic two time-scales within burst suppression, and its synchronization across wide regions of the brain.The second part of the dissertation takes a different, more abstract approach to the question of multiple time-scale brain dynamics. Here, we consider how such dynamics might contribute to the process of learning in brain and brain-like networks, so as to enable neural information processing and subsequent computation. In particular, we consider the problem of optimizing information-theoretic quantities in recurrent neural networks via synaptic plasticity. In a recurrent network, such a problem is challenging since the modification of any one synapse (connection) has nontrivial dependency on the entire state of the network. This form of global learning is computationally challenging and moreover, is not plausible from a biological standpoint. In our results, we overcome these issues by deriving a local learning rule, one that modifies synapses based only on the activity of neighboring neurons. To do this, we augment from first principles the dynamics of each neuron with several auxiliary variables, each evolving at a different time-scale. The purpose of these variables is to support the estimation of global information-based quantities from local neuronal activity. It turns out that the synthesized dynamics, while providing only an approximation of the true solution, nonetheless are highly efficacious in enabling learning of representations of afferent input. Later, we generalize this framework in two ways, first to allow for goal-directed reinforcement learning and then to allow for information-based neurogenesis, the creation of neurons within a network based on task needs. Finally, the proposed learning dynamics are demonstrated on a range of canonical tasks, as well as a new application domain: the exogenous control of neural activity.

Book Advances in Neural Information Processing Systems 7

Download or read book Advances in Neural Information Processing Systems 7 written by Gerald Tesauro and published by MIT Press. This book was released on 1995 with total page 1180 pages. Available in PDF, EPUB and Kindle. Book excerpt: November 28-December 1, 1994, Denver, Colorado NIPS is the longest running annual meeting devoted to Neural Information Processing Systems. Drawing on such disparate domains as neuroscience, cognitive science, computer science, statistics, mathematics, engineering, and theoretical physics, the papers collected in the proceedings of NIPS7 reflect the enduring scientific and practical merit of a broad-based, inclusive approach to neural information processing. The primary focus remains the study of a wide variety of learning algorithms and architectures, for both supervised and unsupervised learning. The 139 contributions are divided into eight parts: Cognitive Science, Neuroscience, Learning Theory, Algorithms and Architectures, Implementations, Speech and Signal Processing, Visual Processing, and Applications. Topics of special interest include the analysis of recurrent nets, connections to HMMs and the EM procedure, and reinforcement- learning algorithms and the relation to dynamic programming. On the theoretical front, progress is reported in the theory of generalization, regularization, combining multiple models, and active learning. Neuroscientific studies range from the large-scale systems such as visual cortex to single-cell electrotonic structure, and work in cognitive scientific is closely tied to underlying neural constraints. There are also many novel applications such as tokamak plasma control, Glove-Talk, and hand tracking, and a variety of hardware implementations, with particular focus on analog VLSI.

Book Criticality in Neural Systems

Download or read book Criticality in Neural Systems written by Dietmar Plenz and published by John Wiley & Sons. This book was released on 2014-04-14 with total page 734 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neurowissenschaftler suchen nach Antworten auf die Fragen, wie wir lernen und Information speichern, welche Prozesse im Gehirn verantwortlich sind und in welchem Zeitrahmen diese ablaufen. Die Konzepte, die aus der Physik kommen und weiterentwickelt werden, können in Medizin und Soziologie, aber auch in Robotik und Bildanalyse Anwendung finden. Zentrales Thema dieses Buches sind die sogenannten kritischen Phänomene im Gehirn. Diese werden mithilfe mathematischer und physikalischer Modelle beschrieben, mit denen man auch Erdbeben, Waldbrände oder die Ausbreitung von Epidemien modellieren kann. Neuere Erkenntnisse haben ergeben, dass diese selbstgeordneten Instabilitäten auch im Nervensystem auftreten. Dieses Referenzwerk stellt theoretische und experimentelle Befunde internationaler Gehirnforschung vor zeichnet die Perspektiven dieses neuen Forschungsfeldes auf.

Book Influence of Inter  and Intra Synaptic Factors on Information Processing in the Brain

Download or read book Influence of Inter and Intra Synaptic Factors on Information Processing in the Brain written by Vito Di Maio and published by Frontiers Media SA. This book was released on 2019-10-14 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: Any brain activity relies on the interaction of thousands of neurons, each of which integrating signals from thousands of synapses. While neurons are undoubtedly the building blocks of the brain, synapses constitute the main loci of information transfer that lead to the emergence of neuronal code. Investigating synaptic transmission constitutes a multi-faceted challenge that brings together a large number of techniques and expertise ranging from experimental to computational approaches, bringing together paradigms spanning from molecular to neural network level. In this book, we have collected a series of articles that present foundational work aimed at shedding much-needed light on brain information processing, synaptic transmission and neural code formation. Some articles present analyses of regulatory mechanisms underlying neural code formation and its elaboration at the molecular level, while others use computational and modelling approaches to investigate, at synaptic, neuronal and inter-neuronal level, how the different mechanisms involved in information processing interact to generate effects like long-term potentiation (LTP), which constitutes the cellular basis of learning and memory. This collection, although not exhaustive, aims to present a framework of the most used investigational paradigms and showcase results that may, in turn, generate novel hypotheses and ideas for further studies and investigations.

Book Neural Information Processing and VLSI

Download or read book Neural Information Processing and VLSI written by Bing J. Sheu and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 569 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural Information Processing and VLSI provides a unified treatment of this important subject for use in classrooms, industry, and research laboratories, in order to develop advanced artificial and biologically-inspired neural networks using compact analog and digital VLSI parallel processing techniques. Neural Information Processing and VLSI systematically presents various neural network paradigms, computing architectures, and the associated electronic/optical implementations using efficient VLSI design methodologies. Conventional digital machines cannot perform computationally-intensive tasks with satisfactory performance in such areas as intelligent perception, including visual and auditory signal processing, recognition, understanding, and logical reasoning (where the human being and even a small living animal can do a superb job). Recent research advances in artificial and biological neural networks have established an important foundation for high-performance information processing with more efficient use of computing resources. The secret lies in the design optimization at various levels of computing and communication of intelligent machines. Each neural network system consists of massively paralleled and distributed signal processors with every processor performing very simple operations, thus consuming little power. Large computational capabilities of these systems in the range of some hundred giga to several tera operations per second are derived from collectively parallel processing and efficient data routing, through well-structured interconnection networks. Deep-submicron very large-scale integration (VLSI) technologies can integrate tens of millions of transistors in a single silicon chip for complex signal processing and information manipulation. The book is suitable for those interested in efficient neurocomputing as well as those curious about neural network system applications. It has been especially prepared for use as a text for advanced undergraduate and first year graduate students, and is an excellent reference book for researchers and scientists working in the fields covered.

Book Neural Information Processing

Download or read book Neural Information Processing written by Derong Liu and published by Springer. This book was released on 2017-11-07 with total page 911 pages. Available in PDF, EPUB and Kindle. Book excerpt: The six volume set LNCS 10634, LNCS 10635, LNCS 10636, LNCS 10637, LNCS 10638, and LNCS 10639 constitues the proceedings of the 24rd International Conference on Neural Information Processing, ICONIP 2017, held in Guangzhou, China, in November 2017. The 563 full papers presented were carefully reviewed and selected from 856 submissions. The 6 volumes are organized in topical sections on Machine Learning, Reinforcement Learning, Big Data Analysis, Deep Learning, Brain-Computer Interface, Computational Finance, Computer Vision, Neurodynamics, Sensory Perception and Decision Making, Computational Intelligence, Neural Data Analysis, Biomedical Engineering, Emotion and Bayesian Networks, Data Mining, Time-Series Analysis, Social Networks, Bioinformatics, Information Security and Social Cognition, Robotics and Control, Pattern Recognition, Neuromorphic Hardware and Speech Processing.

Book Advances in Neural Information Processing Systems

Download or read book Advances in Neural Information Processing Systems written by Thomas G. Dietterich and published by MIT Press. This book was released on 2002-09 with total page 856 pages. Available in PDF, EPUB and Kindle. Book excerpt: The proceedings of the 2001 Neural Information Processing Systems (NIPS) Conference. The annual conference on Neural Information Processing Systems (NIPS) is the flagship conference on neural computation. The conference is interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, vision, speech and signal processing, reinforcement learning and control, implementations, and diverse applications. Only about 30 percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. These proceedings contain all of the papers that were presented at the 2001 conference.

Book Neuronal Dynamics

    Book Details:
  • Author : Wulfram Gerstner
  • Publisher : Cambridge University Press
  • Release : 2014-07-24
  • ISBN : 1107060834
  • Pages : 591 pages

Download or read book Neuronal Dynamics written by Wulfram Gerstner and published by Cambridge University Press. This book was released on 2014-07-24 with total page 591 pages. Available in PDF, EPUB and Kindle. Book excerpt: This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.

Book Neural Information Processing

Download or read book Neural Information Processing written by Long Cheng and published by Springer. This book was released on 2018-12-03 with total page 708 pages. Available in PDF, EPUB and Kindle. Book excerpt: The seven-volume set of LNCS 11301-11307, constitutes the proceedings of the 25th International Conference on Neural Information Processing, ICONIP 2018, held in Siem Reap, Cambodia, in December 2018. The 401 full papers presented were carefully reviewed and selected from 575 submissions. The papers address the emerging topics of theoretical research, empirical studies, and applications of neural information processing techniques across different domains. The 7th and final volume, LNCS 11307, is organized in topical sections on robotics and control; biomedical applications; and hardware.

Book Advances in Neural Information Processing Systems 15

Download or read book Advances in Neural Information Processing Systems 15 written by Suzanna Becker and published by MIT Press. This book was released on 2003 with total page 1738 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the 2002 Neural Information Processing Systems Conference.