EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Nested algorithms for optimal reservoir operation and their embedding in a decision support platform

Download or read book Nested algorithms for optimal reservoir operation and their embedding in a decision support platform written by Blagoj Delipetrev and published by CRC Press. This book was released on 2020-04-30 with total page 125 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reservoir operation is a multi-objective optimization problem, and is traditionally solved with dynamic programming (DP) and stochastic dynamic programming (SDP) algorithms. The thesis presents novel algorithms for optimal reservoir operation, named nested DP (nDP), nested SDP (nSDP), nested reinforcement learning (nRL) and their multi-objective (MO) variants, correspondingly MOnDP, MOnSDP and MOnRL. The idea is to include a nested optimization algorithm into each state transition, which reduces the initial problem dimension and alleviates the curse of dimensionality. These algorithms can solve multi-objective optimization problems, without significantly increasing the algorithm complexity or the computational expenses. It can additionally handle dense and irregular variable discretization. All algorithms are coded in Java and were tested on the case study of the Knezevo reservoir in the Republic of Macedonia. Nested optimization algorithms are embedded in a cloud application platform for water resources modeling and optimization. The platform is available 24/7, accessible from everywhere, scalable, distributed, interoperable, and it creates a real-time multiuser collaboration platform. This thesis contributes with new and more powerful algorithms for an optimal reservoir operation and cloud application platform. All source codes are available for public use and can be used by researchers and practitioners to further advance the mentioned areas.

Book Nested algorithms for optimal reservoir operation and their embedding in a decision support platform

Download or read book Nested algorithms for optimal reservoir operation and their embedding in a decision support platform written by Blagoj Delipetrev and published by CRC Press. This book was released on 2020-04-30 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reservoir operation is a multi-objective optimization problem, and is traditionally solved with dynamic programming (DP) and stochastic dynamic programming (SDP) algorithms. The thesis presents novel algorithms for optimal reservoir operation, named nested DP (nDP), nested SDP (nSDP), nested reinforcement learning (nRL) and their multi-objective (MO) variants, correspondingly MOnDP, MOnSDP and MOnRL. The idea is to include a nested optimization algorithm into each state transition, which reduces the initial problem dimension and alleviates the curse of dimensionality. These algorithms can solve multi-objective optimization problems, without significantly increasing the algorithm complexity or the computational expenses. It can additionally handle dense and irregular variable discretization. All algorithms are coded in Java and were tested on the case study of the Knezevo reservoir in the Republic of Macedonia. Nested optimization algorithms are embedded in a cloud application platform for water resources modeling and optimization. The platform is available 24/7, accessible from everywhere, scalable, distributed, interoperable, and it creates a real-time multiuser collaboration platform. This thesis contributes with new and more powerful algorithms for an optimal reservoir operation and cloud application platform. All source codes are available for public use and can be used by researchers and practitioners to further advance the mentioned areas.

Book Designing and Operating a Data Reservoir

Download or read book Designing and Operating a Data Reservoir written by Mandy Chessell and published by IBM Redbooks. This book was released on 2015-05-26 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Together, big data and analytics have tremendous potential to improve the way we use precious resources, to provide more personalized services, and to protect ourselves from unexpected and ill-intentioned activities. To fully use big data and analytics, an organization needs a system of insight. This is an ecosystem where individuals can locate and access data, and build visualizations and new analytical models that can be deployed into the IT systems to improve the operations of the organization. The data that is most valuable for analytics is also valuable in its own right and typically contains personal and private information about key people in the organization such as customers, employees, and suppliers. Although universal access to data is desirable, safeguards are necessary to protect people's privacy, prevent data leakage, and detect suspicious activity. The data reservoir is a reference architecture that balances the desire for easy access to data with information governance and security. The data reservoir reference architecture describes the technical capabilities necessary for a system of insight, while being independent of specific technologies. Being technology independent is important, because most organizations already have investments in data platforms that they want to incorporate in their solution. In addition, technology is continually improving, and the choice of technology is often dictated by the volume, variety, and velocity of the data being managed. A system of insight needs more than technology to succeed. The data reservoir reference architecture includes description of governance and management processes and definitions to ensure the human and business systems around the technology support a collaborative, self-service, and safe environment for data use. The data reservoir reference architecture was first introduced in Governing and Managing Big Data for Analytics and Decision Makers, REDP-5120, which is available at: http://www.redbooks.ibm.com/redpieces/abstracts/redp5120.html. This IBM® Redbooks publication, Designing and Operating a Data Reservoir, builds on that material to provide more detail on the capabilities and internal workings of a data reservoir.

Book Genetic Algorithms in Search  Optimization  and Machine Learning

Download or read book Genetic Algorithms in Search Optimization and Machine Learning written by David Edward Goldberg and published by Addison-Wesley Professional. This book was released on 1989 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: A gentle introduction to genetic algorithms. Genetic algorithms revisited: mathematical foundations. Computer implementation of a genetic algorithm. Some applications of genetic algorithms. Advanced operators and techniques in genetic search. Introduction to genetics-based machine learning. Applications of genetics-based machine learning. A look back, a glance ahead. A review of combinatorics and elementary probability. Pascal with random number generation for fortran, basic, and cobol programmers. A simple genetic algorithm (SGA) in pascal. A simple classifier system(SCS) in pascal. Partition coefficient transforms for problem-coding analysis.

Book Decision making in a Fuzzy Environment

Download or read book Decision making in a Fuzzy Environment written by Richard Bellman and published by . This book was released on 1970 with total page 76 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Biometric and Intelligent Decision Making Support

Download or read book Biometric and Intelligent Decision Making Support written by Arturas Kaklauskas and published by Springer. This book was released on 2014-12-26 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents different methods for analyzing the body language (movement, position, use of personal space, silences, pauses and tone, the eyes, pupil dilation or constriction, smiles, body temperature and the like) for better understanding people’s needs and actions, including biometric data gathering and reading. Different studies described in this book indicate that sufficiently much data, information and knowledge can be gained by utilizing biometric technologies. This is the first, wide-ranging book that is devoted completely to the area of intelligent decision support systems, biometrics technologies and their integrations. This book is designated for scholars, practitioners and doctoral and master’s degree students in various areas and those who are interested in the latest biometric and intelligent decision making support problems and means for their resolutions, biometric and intelligent decision making support systems and the theory and practice of their integration and the opportunities for the practical use of biometric and intelligent decision making support.

Book Decision Making under Deep Uncertainty

Download or read book Decision Making under Deep Uncertainty written by Vincent A. W. J. Marchau and published by Springer. This book was released on 2019-04-04 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book focuses on both the theory and practice associated with the tools and approaches for decisionmaking in the face of deep uncertainty. It explores approaches and tools supporting the design of strategic plans under deep uncertainty, and their testing in the real world, including barriers and enablers for their use in practice. The book broadens traditional approaches and tools to include the analysis of actors and networks related to the problem at hand. It also shows how lessons learned in the application process can be used to improve the approaches and tools used in the design process. The book offers guidance in identifying and applying appropriate approaches and tools to design plans, as well as advice on implementing these plans in the real world. For decisionmakers and practitioners, the book includes realistic examples and practical guidelines that should help them understand what decisionmaking under deep uncertainty is and how it may be of assistance to them. Decision Making under Deep Uncertainty: From Theory to Practice is divided into four parts. Part I presents five approaches for designing strategic plans under deep uncertainty: Robust Decision Making, Dynamic Adaptive Planning, Dynamic Adaptive Policy Pathways, Info-Gap Decision Theory, and Engineering Options Analysis. Each approach is worked out in terms of its theoretical foundations, methodological steps to follow when using the approach, latest methodological insights, and challenges for improvement. In Part II, applications of each of these approaches are presented. Based on recent case studies, the practical implications of applying each approach are discussed in depth. Part III focuses on using the approaches and tools in real-world contexts, based on insights from real-world cases. Part IV contains conclusions and a synthesis of the lessons that can be drawn for designing, applying, and implementing strategic plans under deep uncertainty, as well as recommendations for future work. The publication of this book has been funded by the Radboud University, the RAND Corporation, Delft University of Technology, and Deltares.

Book Frontiers in Massive Data Analysis

Download or read book Frontiers in Massive Data Analysis written by National Research Council and published by National Academies Press. This book was released on 2013-09-03 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data mining of massive data sets is transforming the way we think about crisis response, marketing, entertainment, cybersecurity and national intelligence. Collections of documents, images, videos, and networks are being thought of not merely as bit strings to be stored, indexed, and retrieved, but as potential sources of discovery and knowledge, requiring sophisticated analysis techniques that go far beyond classical indexing and keyword counting, aiming to find relational and semantic interpretations of the phenomena underlying the data. Frontiers in Massive Data Analysis examines the frontier of analyzing massive amounts of data, whether in a static database or streaming through a system. Data at that scale-terabytes and petabytes-is increasingly common in science (e.g., particle physics, remote sensing, genomics), Internet commerce, business analytics, national security, communications, and elsewhere. The tools that work to infer knowledge from data at smaller scales do not necessarily work, or work well, at such massive scale. New tools, skills, and approaches are necessary, and this report identifies many of them, plus promising research directions to explore. Frontiers in Massive Data Analysis discusses pitfalls in trying to infer knowledge from massive data, and it characterizes seven major classes of computation that are common in the analysis of massive data. Overall, this report illustrates the cross-disciplinary knowledge-from computer science, statistics, machine learning, and application disciplines-that must be brought to bear to make useful inferences from massive data.

Book Water Resource Systems Planning and Management

Download or read book Water Resource Systems Planning and Management written by Daniel P. Loucks and published by Springer. This book was released on 2017-03-02 with total page 635 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is open access under a CC BY-NC 4.0 license. This revised, updated textbook presents a systems approach to the planning, management, and operation of water resources infrastructure in the environment. Previously published in 2005 by UNESCO and Deltares (Delft Hydraulics at the time), this new edition, written again with contributions from Jery R. Stedinger, Jozef P. M. Dijkman, and Monique T. Villars, is aimed equally at students and professionals. It introduces readers to the concept of viewing issues involving water resources as a system of multiple interacting components and scales. It offers guidelines for initiating and carrying out water resource system planning and management projects. It introduces alternative optimization, simulation, and statistical methods useful for project identification, design, siting, operation and evaluation and for studying post-planning issues. The authors cover both basin-wide and urban water issues and present ways of identifying and evaluating alternatives for addressing multiple-purpose and multi-objective water quantity and quality management challenges. Reinforced with cases studies, exercises, and media supplements throughout, the text is ideal for upper-level undergraduate and graduate courses in water resource planning and management as well as for practicing planners and engineers in the field.

Book Handbook on Modelling for Discrete Optimization

Download or read book Handbook on Modelling for Discrete Optimization written by Gautam M. Appa and published by Springer Science & Business Media. This book was released on 2006-08-18 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to demonstrate and detail the pervasive nature of Discrete Optimization. The handbook couples the difficult, critical-thinking aspects of mathematical modeling with the hot area of discrete optimization. It is done with an academic treatment outlining the state-of-the-art for researchers across the domains of the Computer Science, Math Programming, Applied Mathematics, Engineering, and Operations Research. The book utilizes the tools of mathematical modeling, optimization, and integer programming to solve a broad range of modern problems.

Book Evil Media

    Book Details:
  • Author : Matthew Fuller
  • Publisher : MIT Press
  • Release : 2012-08-17
  • ISBN : 0262304406
  • Pages : 245 pages

Download or read book Evil Media written by Matthew Fuller and published by MIT Press. This book was released on 2012-08-17 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: A philosophical manual of media power for the network age. Evil Media develops a philosophy of media power that extends the concept of media beyond its tried and trusted use in the games of meaning, symbolism, and truth. It addresses the gray zones in which media exist as corporate work systems, algorithms and data structures, twenty-first century self-improvement manuals, and pharmaceutical techniques. Evil Media invites the reader to explore and understand the abstract infrastructure of the present day. From search engines to flirting strategies, from the value of institutional stupidity to the malicious minutiae of databases, this book shows how the devil is in the details. The title takes the imperative “Don't be evil” and asks, what would be done any differently in contemporary computational and networked media were that maxim reversed. Media here are about much more and much less than symbols, stories, information, or communication: media do things. They incite and provoke, twist and bend, leak and manage. In a series of provocative stratagems designed to be used, Evil Media sets its reader an ethical challenge: either remain a transparent intermediary in the networks and chains of communicative power or become oneself an active, transformative medium.

Book Reinforcement Learning and Dynamic Programming Using Function Approximators

Download or read book Reinforcement Learning and Dynamic Programming Using Function Approximators written by Lucian Busoniu and published by CRC Press. This book was released on 2017-07-28 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: From household appliances to applications in robotics, engineered systems involving complex dynamics can only be as effective as the algorithms that control them. While Dynamic Programming (DP) has provided researchers with a way to optimally solve decision and control problems involving complex dynamic systems, its practical value was limited by algorithms that lacked the capacity to scale up to realistic problems. However, in recent years, dramatic developments in Reinforcement Learning (RL), the model-free counterpart of DP, changed our understanding of what is possible. Those developments led to the creation of reliable methods that can be applied even when a mathematical model of the system is unavailable, allowing researchers to solve challenging control problems in engineering, as well as in a variety of other disciplines, including economics, medicine, and artificial intelligence. Reinforcement Learning and Dynamic Programming Using Function Approximators provides a comprehensive and unparalleled exploration of the field of RL and DP. With a focus on continuous-variable problems, this seminal text details essential developments that have substantially altered the field over the past decade. In its pages, pioneering experts provide a concise introduction to classical RL and DP, followed by an extensive presentation of the state-of-the-art and novel methods in RL and DP with approximation. Combining algorithm development with theoretical guarantees, they elaborate on their work with illustrative examples and insightful comparisons. Three individual chapters are dedicated to representative algorithms from each of the major classes of techniques: value iteration, policy iteration, and policy search. The features and performance of these algorithms are highlighted in extensive experimental studies on a range of control applications. The recent development of applications involving complex systems has led to a surge of interest in RL and DP methods and the subsequent need for a quality resource on the subject. For graduate students and others new to the field, this book offers a thorough introduction to both the basics and emerging methods. And for those researchers and practitioners working in the fields of optimal and adaptive control, machine learning, artificial intelligence, and operations research, this resource offers a combination of practical algorithms, theoretical analysis, and comprehensive examples that they will be able to adapt and apply to their own work. Access the authors' website at www.dcsc.tudelft.nl/rlbook/ for additional material, including computer code used in the studies and information concerning new developments.

Book Reservoir Fish Habitat Management

Download or read book Reservoir Fish Habitat Management written by Leandro Miranda and published by . This book was released on 2017-01-02 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Hydrometeorology

    Book Details:
  • Author : Kevin Sene
  • Publisher : Springer Science & Business Media
  • Release : 2009-12-12
  • ISBN : 904813403X
  • Pages : 356 pages

Download or read book Hydrometeorology written by Kevin Sene and published by Springer Science & Business Media. This book was released on 2009-12-12 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes recent developments in hydrometeorological forecasting techniques for a range of timescales, from short term to seasonal and longer terms. It conveniently brings together both meteorological and hydrological aspects in a single volume.

Book After the Digital Tornado

    Book Details:
  • Author : Kevin Werbach
  • Publisher : Cambridge University Press
  • Release : 2020-07-23
  • ISBN : 1108645259
  • Pages : 251 pages

Download or read book After the Digital Tornado written by Kevin Werbach and published by Cambridge University Press. This book was released on 2020-07-23 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: Networks powered by algorithms are pervasive. Major contemporary technology trends - Internet of Things, Big Data, Digital Platform Power, Blockchain, and the Algorithmic Society - are manifestations of this phenomenon. The internet, which once seemed an unambiguous benefit to society, is now the basis for invasions of privacy, massive concentrations of power, and wide-scale manipulation. The algorithmic networked world poses deep questions about power, freedom, fairness, and human agency. The influential 1997 Federal Communications Commission whitepaper “Digital Tornado” hailed the “endless spiral of connectivity” that would transform society, and today, little remains untouched by digital connectivity. Yet fundamental questions remain unresolved, and even more serious challenges have emerged. This important collection, which offers a reckoning and a foretelling, features leading technology scholars who explain the legal, business, ethical, technical, and public policy challenges of building pervasive networks and algorithms for the benefit of humanity. This title is also available as Open Access on Cambridge Core.

Book Facing Hazards and Disasters

Download or read book Facing Hazards and Disasters written by National Research Council and published by National Academies Press. This book was released on 2006-09-10 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: Social science research conducted since the late 1970's has contributed greatly to society's ability to mitigate and adapt to natural, technological, and willful disasters. However, as evidenced by Hurricane Katrina, the Indian Ocean tsunami, the September 11, 2001 terrorist attacks on the United States, and other recent events, hazards and disaster research and its application could be improved greatly. In particular, more studies should be pursued that compare how the characteristics of different types of events-including predictability, forewarning, magnitude, and duration of impact-affect societal vulnerability and response. This book includes more than thirty recommendations for the hazards and disaster community.

Book The Lion Way

    Book Details:
  • Author : Roberto Battiti
  • Publisher : Createspace Independent Publishing Platform
  • Release : 2014-02-21
  • ISBN : 9781496034021
  • Pages : 0 pages

Download or read book The Lion Way written by Roberto Battiti and published by Createspace Independent Publishing Platform. This book was released on 2014-02-21 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learning and Intelligent Optimization (LION) is the combination of learning from data and optimization applied to solve complex and dynamic problems. The LION way is about increasing the automation level and connecting data directly to decisions and actions. More power is directly in the hands of decision makers in a self-service manner, without resorting to intermediate layers of data scientists. LION is a complex array of mechanisms, like the engine in an automobile, but the user (driver) does not need to know the inner workings of the engine in order to realize its tremendous benefits. LION's adoption will create a prairie fire of innovation which will reach most businesses in the next decades. Businesses, like plants in wildfire-prone ecosystems, will survive and prosper by adapting and embracing LION techniques, or they risk being transformed from giant trees to ashes by the spreading competition.