EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Inductive Biases in Machine Learning for Robotics and Control

Download or read book Inductive Biases in Machine Learning for Robotics and Control written by Michael Lutter and published by Springer Nature. This book was released on 2023-07-31 with total page 131 pages. Available in PDF, EPUB and Kindle. Book excerpt: One important robotics problem is “How can one program a robot to perform a task”? Classical robotics solves this problem by manually engineering modules for state estimation, planning, and control. In contrast, robot learning solely relies on black-box models and data. This book shows that these two approaches of classical engineering and black-box machine learning are not mutually exclusive. To solve tasks with robots, one can transfer insights from classical robotics to deep networks and obtain better learning algorithms for robotics and control. To highlight that incorporating existing knowledge as inductive biases in machine learning algorithms improves performance, this book covers different approaches for learning dynamics models and learning robust control policies. The presented algorithms leverage the knowledge of Newtonian Mechanics, Lagrangian Mechanics as well as the Hamilton-Jacobi-Isaacs differential equation as inductive bias and are evaluated on physical robots.

Book Parallel Problem Solving from Nature   PPSN VII

Download or read book Parallel Problem Solving from Nature PPSN VII written by Juan J. Merelo and published by Springer. This book was released on 2003-06-30 with total page 935 pages. Available in PDF, EPUB and Kindle. Book excerpt: We are proud to introduce the proceedings of the Seventh International C- ference on Parallel Problem Solving from Nature, PPSN VII, held in Granada, Spain, on 7–11 September 2002. PPSN VII was organized back-to-back with the Foundations of Genetic Algorithms (FOGA) conference, which took place in Torremolinos, Malaga, Spain, in the preceding week. ThePPSNseriesofconferencesstartedinDortmund,Germany[1].Fromthat pioneering meeting, the event has been held biennially, in Brussels, Belgium [2], Jerusalem, Israel [3], Berlin, Germany [4], Amsterdam, The Netherlands [5], and Paris, France [6]. During the Paris conference, several bids to host PPSN 2002 were put forward; it was decided that the conference would be held in Granada with Juan J. Merelo Guerv ́ os as General Chairman. The scienti?c content of the PPSN conference focuses on problem-solving paradigms gleaned from natural models, with an obvious emphasis on those that display an innate parallelism, such as evolutionary algorithms and ant-colony optimization algorithms. The majority of the papers, however, concentrate on evolutionary and hybrid algorithms, as is shown in the contents of this book and itspredecessors.Thiseditionoftheconferenceproceedingshasalargesectionon applications,betheytoclassicalproblemsortoreal-worldengineeringproblems, which shows how bioinspired algorithms are extending their use in the realms of business and enterprise.

Book Bio A I    From Embodied Cognition to Enactive Robotics

Download or read book Bio A I From Embodied Cognition to Enactive Robotics written by Adam Safron and published by Frontiers Media SA. This book was released on 2023-12-08 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Even before the deep learning revolution, the landscape of artificial intelligence (AI) was already changing drastically in the 90s. Embodied intelligence, it was proposed, must play a crucial role in the design of intelligent machines. This new wave was inspired by what is today known as Embodied and Enactive Cognitive Science or E-Cognition, which considers that cognitive activity does not reduce to the intellectual capacities of agents being able to represent their environments. E-cognition set AI and robotics in a new direction, in which intelligent machines are required to interact with the environment, and where this interaction does not reduce to explicit representations or prespecified algorithms. These ideas revolutionized the way we think about intelligent machines and cognition, but these theoretical advances are only partially reflected in modern approaches to AI and machine learning (ML). Despite deeply impressive achievements, AI/ML still struggles to recapitulate the kinds of intelligence we find in natural systems, whether we are considering individual insects (e.g. simultaneous localization and mapping), or swarm behaviour (e.g. forum sensing and ensemble inferences), and especially the kinds of flexibility and high-level reasoning characteristic of human cognition.

Book A Concise Introduction to Models and Methods for Automated Planning

Download or read book A Concise Introduction to Models and Methods for Automated Planning written by Hector Radanovic and published by Springer Nature. This book was released on 2022-05-31 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: Planning is the model-based approach to autonomous behavior where the agent behavior is derived automatically from a model of the actions, sensors, and goals. The main challenges in planning are computational as all models, whether featuring uncertainty and feedback or not, are intractable in the worst case when represented in compact form. In this book, we look at a variety of models used in AI planning, and at the methods that have been developed for solving them. The goal is to provide a modern and coherent view of planning that is precise, concise, and mostly self-contained, without being shallow. For this, we make no attempt at covering the whole variety of planning approaches, ideas, and applications, and focus on the essentials. The target audience of the book are students and researchers interested in autonomous behavior and planning from an AI, engineering, or cognitive science perspective. Table of Contents: Preface / Planning and Autonomous Behavior / Classical Planning: Full Information and Deterministic Actions / Classical Planning: Variations and Extensions / Beyond Classical Planning: Transformations / Planning with Sensing: Logical Models / MDP Planning: Stochastic Actions and Full Feedback / POMDP Planning: Stochastic Actions and Partial Feedback / Discussion / Bibliography / Author's Biography

Book The Algebraic Mind

    Book Details:
  • Author : Gary F. Marcus
  • Publisher : MIT Press
  • Release : 2019-01-01
  • ISBN : 0262354403
  • Pages : 241 pages

Download or read book The Algebraic Mind written by Gary F. Marcus and published by MIT Press. This book was released on 2019-01-01 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: In The Algebraic Mind, Gary Marcus attempts to integrate two theories about how the mind works, one that says that the mind is a computer-like manipulator of symbols, and another that says that the mind is a large network of neurons working together in parallel. Resisting the conventional wisdom that says that if the mind is a large neural network it cannot simultaneously be a manipulator of symbols, Marcus outlines a variety of ways in which neural systems could be organized so as to manipulate symbols, and he shows why such systems are more likely to provide an adequate substrate for language and cognition than neural systems that are inconsistent with the manipulation of symbols. Concluding with a discussion of how a neurally realized system of symbol-manipulation could have evolved and how such a system could unfold developmentally within the womb, Marcus helps to set the future agenda of cognitive neuroscience.

Book Lifelong Machine Learning  Second Edition

Download or read book Lifelong Machine Learning Second Edition written by Zhiyuan Sun and published by Springer Nature. This book was released on 2022-06-01 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lifelong Machine Learning, Second Edition is an introduction to an advanced machine learning paradigm that continuously learns by accumulating past knowledge that it then uses in future learning and problem solving. In contrast, the current dominant machine learning paradigm learns in isolation: given a training dataset, it runs a machine learning algorithm on the dataset to produce a model that is then used in its intended application. It makes no attempt to retain the learned knowledge and use it in subsequent learning. Unlike this isolated system, humans learn effectively with only a few examples precisely because our learning is very knowledge-driven: the knowledge learned in the past helps us learn new things with little data or effort. Lifelong learning aims to emulate this capability, because without it, an AI system cannot be considered truly intelligent. Research in lifelong learning has developed significantly in the relatively short time since the first edition of this book was published. The purpose of this second edition is to expand the definition of lifelong learning, update the content of several chapters, and add a new chapter about continual learning in deep neural networks—which has been actively researched over the past two or three years. A few chapters have also been reorganized to make each of them more coherent for the reader. Moreover, the authors want to propose a unified framework for the research area. Currently, there are several research topics in machine learning that are closely related to lifelong learning—most notably, multi-task learning, transfer learning, and meta-learning—because they also employ the idea of knowledge sharing and transfer. This book brings all these topics under one roof and discusses their similarities and differences. Its goal is to introduce this emerging machine learning paradigm and present a comprehensive survey and review of the important research results and latest ideas in the area. This book is thus suitable for students, researchers, and practitioners who are interested in machine learning, data mining, natural language processing, or pattern recognition. Lecturers can readily use the book for courses in any of these related fields.

Book Intelligent Robotics and Applications

Download or read book Intelligent Robotics and Applications written by Honghai Liu and published by Springer Nature. This book was released on 2022-08-09 with total page 796 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 4-volume set LNAI 13455 - 13458 constitutes the proceedings of the 15th International Conference on Intelligent Robotics and Applications, ICIRA 2022, which took place in Harbin China, during August 2022. The 284 papers included in these proceedings were carefully reviewed and selected from 442 submissions. They were organized in topical sections as follows: Robotics, Mechatronics, Applications, Robotic Machining, Medical Engineering, Soft and Hybrid Robots, Human-robot Collaboration, Machine Intelligence, and Human Robot Interaction.

Book Computer Vision     ECCV 2020

Download or read book Computer Vision ECCV 2020 written by Andrea Vedaldi and published by Springer Nature. This book was released on 2020-12-02 with total page 830 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 30-volume set, comprising the LNCS books 12346 until 12375, constitutes the refereed proceedings of the 16th European Conference on Computer Vision, ECCV 2020, which was planned to be held in Glasgow, UK, during August 23-28, 2020. The conference was held virtually due to the COVID-19 pandemic. The 1360 revised papers presented in these proceedings were carefully reviewed and selected from a total of 5025 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.

Book An Introduction to Deep Reinforcement Learning

Download or read book An Introduction to Deep Reinforcement Learning written by Vincent Francois-Lavet and published by Foundations and Trends (R) in Machine Learning. This book was released on 2018-12-20 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep reinforcement learning is the combination of reinforcement learning (RL) and deep learning. This field of research has recently been able to solve a wide range of complex decision-making tasks that were previously out of reach for a machine. Deep RL opens up many new applications in domains such as healthcare, robotics, smart grids, finance, and many more. This book provides the reader with a starting point for understanding the topic. Although written at a research level it provides a comprehensive and accessible introduction to deep reinforcement learning models, algorithms and techniques. Particular focus is on the aspects related to generalization and how deep RL can be used for practical applications. Written by recognized experts, this book is an important introduction to Deep Reinforcement Learning for practitioners, researchers and students alike.

Book Springer Handbook of Computational Intelligence

Download or read book Springer Handbook of Computational Intelligence written by Janusz Kacprzyk and published by Springer. This book was released on 2015-05-28 with total page 1637 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Springer Handbook for Computational Intelligence is the first book covering the basics, the state-of-the-art and important applications of the dynamic and rapidly expanding discipline of computational intelligence. This comprehensive handbook makes readers familiar with a broad spectrum of approaches to solve various problems in science and technology. Possible approaches include, for example, those being inspired by biology, living organisms and animate systems. Content is organized in seven parts: foundations; fuzzy logic; rough sets; evolutionary computation; neural networks; swarm intelligence and hybrid computational intelligence systems. Each Part is supervised by its own Part Editor(s) so that high-quality content as well as completeness are assured.

Book Transfer Learning for Natural Language Processing

Download or read book Transfer Learning for Natural Language Processing written by Paul Azunre and published by Simon and Schuster. This book was released on 2021-08-31 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build custom NLP models in record time by adapting pre-trained machine learning models to solve specialized problems. Summary In Transfer Learning for Natural Language Processing you will learn: Fine tuning pretrained models with new domain data Picking the right model to reduce resource usage Transfer learning for neural network architectures Generating text with generative pretrained transformers Cross-lingual transfer learning with BERT Foundations for exploring NLP academic literature Training deep learning NLP models from scratch is costly, time-consuming, and requires massive amounts of data. In Transfer Learning for Natural Language Processing, DARPA researcher Paul Azunre reveals cutting-edge transfer learning techniques that apply customizable pretrained models to your own NLP architectures. You’ll learn how to use transfer learning to deliver state-of-the-art results for language comprehension, even when working with limited label data. Best of all, you’ll save on training time and computational costs. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Build custom NLP models in record time, even with limited datasets! Transfer learning is a machine learning technique for adapting pretrained machine learning models to solve specialized problems. This powerful approach has revolutionized natural language processing, driving improvements in machine translation, business analytics, and natural language generation. About the book Transfer Learning for Natural Language Processing teaches you to create powerful NLP solutions quickly by building on existing pretrained models. This instantly useful book provides crystal-clear explanations of the concepts you need to grok transfer learning along with hands-on examples so you can practice your new skills immediately. As you go, you’ll apply state-of-the-art transfer learning methods to create a spam email classifier, a fact checker, and more real-world applications. What's inside Fine tuning pretrained models with new domain data Picking the right model to reduce resource use Transfer learning for neural network architectures Generating text with pretrained transformers About the reader For machine learning engineers and data scientists with some experience in NLP. About the author Paul Azunre holds a PhD in Computer Science from MIT and has served as a Principal Investigator on several DARPA research programs. Table of Contents PART 1 INTRODUCTION AND OVERVIEW 1 What is transfer learning? 2 Getting started with baselines: Data preprocessing 3 Getting started with baselines: Benchmarking and optimization PART 2 SHALLOW TRANSFER LEARNING AND DEEP TRANSFER LEARNING WITH RECURRENT NEURAL NETWORKS (RNNS) 4 Shallow transfer learning for NLP 5 Preprocessing data for recurrent neural network deep transfer learning experiments 6 Deep transfer learning for NLP with recurrent neural networks PART 3 DEEP TRANSFER LEARNING WITH TRANSFORMERS AND ADAPTATION STRATEGIES 7 Deep transfer learning for NLP with the transformer and GPT 8 Deep transfer learning for NLP with BERT and multilingual BERT 9 ULMFiT and knowledge distillation adaptation strategies 10 ALBERT, adapters, and multitask adaptation strategies 11 Conclusions

Book The Deep Learning Revolution

Download or read book The Deep Learning Revolution written by Terrence J. Sejnowski and published by MIT Press. This book was released on 2018-10-23 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: How deep learning—from Google Translate to driverless cars to personal cognitive assistants—is changing our lives and transforming every sector of the economy. The deep learning revolution has brought us driverless cars, the greatly improved Google Translate, fluent conversations with Siri and Alexa, and enormous profits from automated trading on the New York Stock Exchange. Deep learning networks can play poker better than professional poker players and defeat a world champion at Go. In this book, Terry Sejnowski explains how deep learning went from being an arcane academic field to a disruptive technology in the information economy. Sejnowski played an important role in the founding of deep learning, as one of a small group of researchers in the 1980s who challenged the prevailing logic-and-symbol based version of AI. The new version of AI Sejnowski and others developed, which became deep learning, is fueled instead by data. Deep networks learn from data in the same way that babies experience the world, starting with fresh eyes and gradually acquiring the skills needed to navigate novel environments. Learning algorithms extract information from raw data; information can be used to create knowledge; knowledge underlies understanding; understanding leads to wisdom. Someday a driverless car will know the road better than you do and drive with more skill; a deep learning network will diagnose your illness; a personal cognitive assistant will augment your puny human brain. It took nature many millions of years to evolve human intelligence; AI is on a trajectory measured in decades. Sejnowski prepares us for a deep learning future.

Book Proceedings of 3rd International Conference on Artificial Intelligence  Robotics  and Communication

Download or read book Proceedings of 3rd International Conference on Artificial Intelligence Robotics and Communication written by Sanjay Yadav and published by Springer Nature. This book was released on with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Explainable AI  Interpreting  Explaining and Visualizing Deep Learning

Download or read book Explainable AI Interpreting Explaining and Visualizing Deep Learning written by Wojciech Samek and published by Springer Nature. This book was released on 2019-09-10 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of “intelligent” systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to “intelligent” machines. For sensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue to perform as expected when deployed in a real-world environment. In pursuit of that objective, ways for humans to verify the agreement between the AI decision structure and their own ground-truth knowledge have been explored. Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex AI models to humans in a systematic and interpretable manner. The 22 chapters included in this book provide a timely snapshot of algorithms, theory, and applications of interpretable and explainable AI and AI techniques that have been proposed recently reflecting the current discourse in this field and providing directions of future development. The book is organized in six parts: towards AI transparency; methods for interpreting AI systems; explaining the decisions of AI systems; evaluating interpretability and explanations; applications of explainable AI; and software for explainable AI.

Book Understanding Machine Learning

Download or read book Understanding Machine Learning written by Shai Shalev-Shwartz and published by Cambridge University Press. This book was released on 2014-05-19 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.

Book Metaheuristics Algorithm and Optimization of Engineering and Complex Systems

Download or read book Metaheuristics Algorithm and Optimization of Engineering and Complex Systems written by R., Thanigaivelan and published by IGI Global. This book was released on 2024-07-23 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the field of engineering, optimization and decision-making have become pivotal concerns. The ever-increasing demand for data processing has given rise to issues such as extended processing times and escalated memory utilization, posing formidable obstacles across various engineering domains. Problems persist, requiring not only solutions but advancements beyond existing best practices. Creating and implementing novel heuristic algorithms is a time-intensive process, yet the imperative to do so remains strong, driven by the potential to significantly lower computational costs even with marginal improvements. This book, titled Metaheuristics Algorithm and Optimization of Engineering and Complex Systems, is a beacon of innovation in this context. It examines the critical need for inventive algorithmic solutions, exploring hyperheuristic approaches that offer solutions such as automating search spaces through integrated heuristics. Designed to cater to a broad audience, this book is a valuable resource for both novice and experienced dynamic optimization practitioners. By addressing the spectrum of theory and practice, as well as discrete versus continuous dynamic optimization, it becomes an indispensable reference in a captivating and emerging field. With a deliberate focus on inclusivity, the book is poised to benefit anyone with an interest in staying abreast of the latest developments in dynamic optimization.

Book Intelligent Systems and Applications

Download or read book Intelligent Systems and Applications written by Yaxin Bi and published by Springer Nature. This book was released on 2019-08-23 with total page 1316 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents a remarkable collection of chapters covering a wide range of topics in the areas of intelligent systems and artificial intelligence, and their real-world applications. It gathers the proceedings of the Intelligent Systems Conference 2019, which attracted a total of 546 submissions from pioneering researchers, scientists, industrial engineers, and students from all around the world. These submissions underwent a double-blind peer-review process, after which 190 were selected for inclusion in these proceedings. As intelligent systems continue to replace and sometimes outperform human intelligence in decision-making processes, they have made it possible to tackle a host of problems more effectively. This branching out of computational intelligence in several directions and use of intelligent systems in everyday applications have created the need for an international conference as a venue for reporting on the latest innovations and trends. This book collects both theory and application based chapters on virtually all aspects of artificial intelligence; presenting state-of-the-art intelligent methods and techniques for solving real-world problems, along with a vision for future research, it represents a unique and valuable asset.