EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Nanostructured intermetallics  from rational synthesis to energy electrocatalysis

Download or read book Nanostructured intermetallics from rational synthesis to energy electrocatalysis written by Mingcheng Zhang and published by OAE Publishing Inc.. This book was released on 2023-06-05 with total page 28 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intermetallics are a large family of structurally ordered alloys that combines a metal element with other metal/metalloid elements with a clearly defined stoichiometric ratio. Intermetallics possess abundant crystal structures and atomic packing motifs, giving rise to a great variety of electronic configurations and surface adsorption properties. The wide electronic and geometric diversity makes intermetallics a highly promising population for discovering advanced materials for various catalytic applications. This review presents recent advances in the reaction synthesis of intermetallic materials at the nanoscale and their energy-related electrocatalytic applications. Initially, we introduce general principles for the formation of stable intermetallic structures. Subsequently, we elaborate on common synthetic strategies of nanostructured intermetallics, such as thermal annealing, wet-chemical methods, metallothermic reduction, and template-directed synthesis. Furthermore, we discuss the wide employment of these intermetallic nanocatalysts in many different kinds of electrocatalytic applications, as well as highlight the theoretical and experimental evidence for establishing a reasonable relationship between atomic arrangement and catalytic activity. Finally, we propose some perspectives for future developments of intermetallic preparation and catalytic applications.

Book Fabrication of Metal   Organic Framework Derived Nanomaterials and Their Electrochemical Applications

Download or read book Fabrication of Metal Organic Framework Derived Nanomaterials and Their Electrochemical Applications written by Wei Xia and published by Springer. This book was released on 2018-04-03 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis systematically introduces readers to a new metal-organic framework approach to fabricating nanostructured materials for electrochemical applications. Based on the metal-organic framework (MOF) approach, it also demonstrates the latest ideas on how to create optimal MOF and MOF-derived nanomaterials for electrochemical reactions under controlled conditions. The thesis offers a valuable resource for researchers who want to understand electrochemical reactions at nanoscale and optimize materials from rational design to achieve enhanced electrochemical performance. It also serves as a useful reference guide to fundamental research on advanced electrochemical energy storage materials and the synthesis of nanostructured materials.

Book Nanostructured Materials for Electrochemical Energy Production and Storage

Download or read book Nanostructured Materials for Electrochemical Energy Production and Storage written by Edson Roberto Leite and published by Springer Science & Business Media. This book was released on 2010-03-20 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here is an authoritative reference from world-renowned research groups for those working in materials science and electrochemistry. The authors describe properties of nanostructured materials that can improve performance in alternative energy devices.

Book Nanotechnology in Electrocatalysis for Energy

Download or read book Nanotechnology in Electrocatalysis for Energy written by Alessandro Lavacchi and published by Springer Science & Business Media. This book was released on 2014-01-28 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on nanotechnology in electrocatalysis for energy applications. In particular the book covers nanostructured electrocatalysts for low temperature fuel cells, low temperature electrolyzers and electrochemical valorization. The function of this book is to provide an introduction to basic principles of electrocatalysis, together with a review of the main classes of materials and electrode architectures. This book will illustrate the basic ideas behind material design and provide an introductory sketch of current research focuses. The easy-to-follow three part book focuses on major formulas, concepts and philosophies. This book is ideal for professionals and researchers interested in the field of electrochemistry, renewable energy and electrocatalysis.

Book Rational Design and Synthesis of Inorganic Nanostructures for Tandem Catalysis and CO2 Conversion

Download or read book Rational Design and Synthesis of Inorganic Nanostructures for Tandem Catalysis and CO2 Conversion written by Chenlu Xie and published by . This book was released on 2018 with total page 90 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of this dissertation focuses on the design and synthesis of new catalysts with well-defined structures and superior performance to meet the new challenges in heterogenous catalysis. The past decade has witness the development of nanoscience as well as the inorganic catalysts for industrial applications, however there are still fundamental challenges and practical need for catalysis. Specifically, it is desirable to have the ability to selectivity produce complex molecules from simple components. Another great challenge faced by the modern industry is being environmentally friendly, and going for a carbon neutral economy would require using CO2 as feedstock to produce valuable products. The work herein focuses on the design and synthesis of inorganic nanocrystal catalysts that address these challenges by achieving selective and sequential chemical reactions and conversion of CO2 to valuable products. Chapter 1 introduces the development of heterogenous catalysis and the colloidal synthesis of metal nanoparticles catalysts with well-controlled structure. Tremendous efforts have been devoted to understanding the nucleation and growth process in the colloidal synthesis and developing new methods to produce metal nanoparticles with controlled sizes, shapes, composition. These well-defined catalytic system shows promising catalytic performance, which can be modulated by their structure (size, shape, compositions and the metal-oxide interfaces). The chapters hereafter explore the synthesis of new catalysts with controlled structures for catalysis. Chapter 2 presents the design and synthesis of a three dimensional (3D) nanostructured catalysts CeO2-Pt@mSiO2 with dual metal-oxide interfaces to study the tandem hydroformylation reaction in gas phase, where CO and H2 produced by methanol decomposition (catalyzed by CeO2-Pt interface) were reacted with ethylene to selectively yield propyl aldehyde (catalyzed by Pt-SiO2 interface). With the stable core-shell architecture and well-defined metal-oxide interfaces, the origin of the high propyl aldehyde selectivity over ethane, the dominant byproduct in conventional hydroformylation, was revealed by in-depth mechanism study and attributed to the synergybetween the two sequential reactions and the altered elementary reaction steps of the tandem reaction compared to the single-step reaction. The effective production of aldehyde through the tandem hydroformylation was also observed on other light olefin system, such as propylene and 1-butene. Chapter 3 expands the strategy of tandem catalysis into conversion of CO2 with hydrogen to value-added C2-C4 hydrocarbons, which is a major pursuit in clean energy research. Another well-defined 3D catalyst CeO2–Pt@mSiO2–Co was designed and synthesized, and CO2 was converted to C2-C4 hydrocarbons with 60% selectivity on this catalyst via reverse water gas shift reaction and subsequent Fischer–Tropsch process. In addition, the catalysts is stable and shows no obvious deactivation over 40 h. The successful production of C2−C4 hydrocarbons via a tandem process on a rationally designed, structurally well-defined catalyst demonstrates the power of sophisticated structure control in designing nanostructured catalysts for multiple-step chemical conversions. Chapter 4 turns to electrochemistry and apply the precision in catalyst structural design to the development of electrocatalysts for CO2 reduction. Herein, atomic ordering of bimetallic nanoparticles were synthetically tuned, from disordered alloy to ordered intermetallic, and it showed that this atomic level control over nanocrystal catalysts could give significant performance benefits in electrochemical CO2 reduction to CO. Atomic-level structural investigations revealed the atomic gold layers over the intermetallic core to be sufficient for enhanced catalytic behavior, which is further supported by DFT analysis.

Book Metal Oxide Based Nanostructured Electrocatalysts for Fuel Cells  Electrolyzers  and Metal Air Batteries

Download or read book Metal Oxide Based Nanostructured Electrocatalysts for Fuel Cells Electrolyzers and Metal Air Batteries written by Teko Napporn and published by Elsevier. This book was released on 2021-01-30 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries is a comprehensive book summarizing the recent overview of these new materials developed to date. The book is motivated by research that focuses on the reduction of noble metal content in catalysts to reduce the cost associated to the entire system. Metal oxides gained significant interest in heterogeneous catalysis for basic research and industrial deployment. Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries puts these opportunities and challenges into a broad context, discusses the recent researches and technological advances, and finally provides several pathways and guidelines that could inspire the development of ground-breaking electrochemical devices for energy production or storage. Its primary focus is how materials development is an important approach to produce electricity for key applications such as automotive and industrial. The book is appropriate for those working in academia and R&D in the disciplines of materials science, chemistry, electrochemistry, and engineering. - Includes key aspects of materials design to improve the performance of electrode materials for energy conversion and storage device applications - Reviews emerging metal oxide materials for hydrogen production, hydrogen oxidation, oxygen reduction and oxygen evolution - Discusses metal oxide electrocatalysts for water-splitting, metal-air batteries, electrolyzer, and fuel cell applications

Book Nanoelectrocatalysts for Energy and Water Treatment

Download or read book Nanoelectrocatalysts for Energy and Water Treatment written by Kumar Raju (Writer on nanostructured materials) and published by Springer Nature. This book was released on 2024 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanomaterials have recently garnered significant attention and practical importance for heterogeneous electrocatalysis. This book presents recent developments in the design, synthesis, and characterisation of nanostructured electrocatalytic materials, with a focus on applications to energy and wastewater treatment. Electrocatalytic nanomaterials can enhance process efficiency and sustainability, thus providing innovative solutions for a wide array of areas such as sustainable energy production, conversion, and wastewater treatment. Readers will gain insights into the latest breakthroughs in electrocatalysis and the activity of nanomaterials in energy conversion applications, e.g., fuel cells, hydrogen production, water splitting, and electro/photocatalytic water splitting, as well as for wastewater treatment. The book explores the development of advanced electrocatalysts, particularly hybrid materials.

Book Nanostructured Materials for Energy Storage and Conversion

Download or read book Nanostructured Materials for Energy Storage and Conversion written by K. Zaghib and published by The Electrochemical Society. This book was released on 2009-11 with total page 175 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main goal of this symposium was to provide a forum for sharing experiences in nano-structured materials for energy storage and conversion and discussing strategies that can accelerate both the development of new synthesis and the search for new system exhibiting better performance.

Book Electrochemical Synthesis of Nanoengineered Materials and Their Applications

Download or read book Electrochemical Synthesis of Nanoengineered Materials and Their Applications written by Nosang Vincent Myung and published by Frontiers Media SA. This book was released on 2019-12-27 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Electrochemical Synthesis and Characterisation of Multimetallic Nanostructured Electrocatalysts

Download or read book Electrochemical Synthesis and Characterisation of Multimetallic Nanostructured Electrocatalysts written by Tumaini S. P. Mkwizu and published by . This book was released on 2015 with total page 662 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis concerns investigations on novel multistage electrochemical deposition of nanostructured systems composed of noble metals platinum, ruthenium, and gold. Various electrochemical synthetic pathways were systematically explored producing multilayered nanoscale electrode systems composed of Pt, Ru, or Au on glassy carbon or crystalline gold used as substrates. Electrochemical pathways involved sequential surface-limited redox-replacement (SLRR) reactions of underpotentially-deposited or overpotentially-deposited copper, potentiostatic dealloying, direct spontaneous deposition of noble metals (without intermediary steps involving redox-replacement templating reactions) as well as sequential codeposition of noble metals (with or without SLRR templating reactions). Fundamental studies were conducted using thermodynamic and kinetic models, in situ electrochemical techniques and ex situ microscopic, spectroscopic, or spectrophotometric techniques employed for probing factors controlling electrode dynamics, electrocatalysis, morphology, bulk and surface compositional properties of the noble metal-based electrode systems. Unique multilayered multimetallic nanoclusters synthesized (with binary active sites of Pt with Ru or Au) exhibited superior electrocatalytic activity towards methanol or formic acid oxidation reactions when benchmarked to equivalent monometallic multilayered Pt. Hydrodynamic electrokinetic studies of the oxygen reduction reaction (ORR) on the multilayered monometallic Pt and bimetallic Rucontaining nanoclusters revealed that the monometallic nanoclusters exhibited direct four-electron ORR whereas electrocatalysis on the bimetallic ones could be tuned to proceed via a two-electron reaction pathway. Electrocatalytic bifunctional reaction mechanisms were especially enhanced by the nanostructured systems investigated. Characterisation of multilayered nanoclusters surface and near-surface metal contents revealed interactions between metal centers, car.

Book Advanced Nanomaterials for Catalysis and Energy

Download or read book Advanced Nanomaterials for Catalysis and Energy written by Vladislav A. Sadykov and published by Elsevier. This book was released on 2018-08-27 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Nanomaterials for Catalysis and Energy: Synthesis, Characterization and Applications outlines new approaches to the synthesis of nanomaterials (synthesis in flow conditions, laser electrodispersion of single metals or alloys on carbon or oxide supports, mechanochemistry, sol-gel routes, etc.) to provide systems with a narrow particle size distribution, controlled metal-support interaction and nanocomposites with uniform spatial distribution of domains of different phases, even in dense sintered materials. Methods for characterization of real structure and surface properties of nanomaterials are discussed, including synchrotron radiation diffraction and X-ray photoelectron spectroscopy studies, neutronography, transmission/scanning electron microscopy with elemental analysis, and more. The book covers the effect of nanosystems' composition, bulk and surface properties, metal-support interaction, particle size and morphology, deposition density, etc. on their functional properties (transport features, catalytic activity and reaction mechanism). Finally, it includes examples of various developed nanostructured solid electrolytes and mixed ionic-electronic conductors as materials in solid oxide fuel cells and asymmetric supported membranes for oxygen and hydrogen separation. - Outlines synthetic and characterization methods for nanocatalysts - Relates nanocatalysts' properties to their specific applications - Proposes optimization methods aiming at specific applications

Book Metals and Metal Based Electrocatalytic Materials for Alternative Energy Sources and Electronics

Download or read book Metals and Metal Based Electrocatalytic Materials for Alternative Energy Sources and Electronics written by Jasmina Stevanovic and published by Nova Science Publishers. This book was released on 2019 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt: The important role of metals, their oxides and catalytically-interactive supports in contemporary investigations related to rational construction of next-generation devices as alternative energy sources and hi-tech electronics is ambitiously presented throughout this book. The topics involve: Carbonaceous and non-typical platinum-based nanostructured electrode materials as promising candidates for anodic reactions in low-temperature fuel cells. Ruthenium oxide as electroactive material, presented through its innovative synthesis routes involving microwave heating and ultrasonic spray pyrolysis, with the focus on its performances as an electrochemical supercapacitor, but also as a part of multicomponent electrode coating in electrocatalysis of chlorine and oxygen evolution. Alkaline water electrolysis as the simplest method for hydrogen production especially when using renewable energy sources, offering the advantage of simplicity and environmentally clean technology with zero emission of greenhouse gases. New frontiers in electroconductive composite materials and biopolymers combined with noble metal nanoparticles that can be used in nanoelectronics and medical nanotechnologies. The possibilities for the operational improvement of an aluminum-air battery presented through alternative modifications of an Al-anode by alloying with magnesium and electromagnetic bulk structure homogenization. The improvements of copper-based materials as well as the research toward sustainable production of copper itself as an important component for further development of electronic devices.

Book Nanomaterials for Electrocatalysis

Download or read book Nanomaterials for Electrocatalysis written by Thandavarayan Maiyalagan and published by Elsevier. This book was released on 2022-01-28 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanomaterials for Electrocatalysis provides an overview of the different types of nanomaterials, design principles and synthesis protocols used for electrocatalytic reactions. The book is divided into four parts that thoroughly describe basic principles and fundamental of electrocatalysis, different types of nanomaterials used, and their electrocatalytic applications, limitations and future perspectives. As electrochemical systems containing nanomaterials, with relevance to experimental situation, yield better results, this book highlights new information and findings. Provides an overview of nanomaterials applications for electrocatalytic processes, such as oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER) and CO2 reduction reaction (CO2RR) Provides information on the design and development of various nanomaterials appropriate for electrocatalytic applications Assesses the challenges of manufacturing nanomaterials at an industrial scale for electronic applications

Book Handbook of Nanoelectrochemistry

Download or read book Handbook of Nanoelectrochemistry written by Mahmood Aliofkhazraei and published by . This book was released on with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nanostructured Materials in Electrochemistry

Download or read book Nanostructured Materials in Electrochemistry written by Ali Eftekhari and published by Wiley-VCH. This book was released on 2008-03-17 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing the unique and vital link between the worlds of electrochemistry and nanomaterials, this reference and handbook covers advances in electrochemistry through the nanoscale control of electrode structures, as well as advances in nanotechnology through electrochemical synthesis strategies. It demonstrates how electrochemical methods are of great scientific and commercial interest due to their low cost and high efficiency, and includes the synthesis of nanowires, nanoparticles, nanoporous and layered nanomaterials of various compositions, as well as their applications -- ranging from superior electrode materials to energy storage, biosensors, and electroanalytical devices.

Book Nanostructured Materials for Energy Storage and Conversion

Download or read book Nanostructured Materials for Energy Storage and Conversion written by Xiulei Ji and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Ordered Intermetallics

Download or read book Ordered Intermetallics written by C.T. Liu and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 692 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ordered intermetallics constitute a unique class of metallic materials which may be developed as new-generation materials for structural use at high temperatures in hostile environments. At present, there is a worldwide interest in intermetallics, and extensive efforts have been devoted to intermetallic research and development in the U.S., Japan, European countries, and other nations. As a result, significant advances have been made in all areas of intermetallic research. This NATO Advanced Workshop on ordered intermetallics (1) reviews the recent progress, and (2) assesses the future direction of intermetallic research in the areas of electronic structure and phase stability, deformation and fracture, and high-temperature properties. The book is divided into six parts: (1) Electronic Structure and Phase Stability; (2) Deformation and Dislocation Structures; (3) Ductility and Fracture; (4) Kinetic Processes and Creep Behavior; (5) Research Programs and Highlights; and (6) Assessment of Current Research and Recommendation for Future Work. The first four parts review the recent advances in the three focus areas. The fifth part provides highlights of the intermetallic research under major programs and in different institutes and countries. The last part provides a forum for the discussion of research areas for future studies.