EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Nanostructured Fe Cr Alloys for Advanced Nuclear Energy Applications

Download or read book Nanostructured Fe Cr Alloys for Advanced Nuclear Energy Applications written by and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: We have completed research on the grain-size stabilization of model nanostructured Fe14Cr base alloys at high temperatures by the addition of non-equilibrium solutes. Fe14Cr base alloys are representative for nuclear reactor applications. The neutron flux in a nuclear reactor will generate He atoms that coalesce to form He bubbles. These can lead to premature failure of the reactor components, limiting their lifetime and increasing the cost and capacity for power generation. In order to mitigate such failures, Fe14Cr base alloys have been processed to contain very small nano-size oxide particles (less than 10 nm in size) that trap He atoms and reduce bubble formation. Theoretical and experimental results indicate that the grain boundaries can also be very effective traps for He atoms and bubble formation. An optimum grain size will be less than 100 nm, ie., nanocrystalline alloys must be used. Powder metallurgy methods based on high-energy ball milling can produce Fe-Cr base nanocrystalline alloys that are suitable for nuclear energy applications. The problem with nanocrystalline alloys is that excess grain-boundary energy will cause grains to grow at higher temperatures and their propensity for He trapping will be lost. The nano-size oxide particles in current generation nuclear alloys provide some grain size stabilization by reducing grain-boundary mobility (Zener pinning - a kinetic effect). However the current mitigation strategy minimizing bubble formation is based primarily on He trapping by nano-size oxide particles. An alternate approach to nanoscale grain size stabilization has been proposed. This is based on the addition of small amounts of atoms that are large compared to the base alloy. At higher temperatures these will diffuse to the grain boundaries and will produce an equilibrium state for the grain size at higher temperatures (thermodynamic stabilization - an equilibrium effect). This would be preferred compared to a kinetic effect, which is not based on an equilibrium state. The PI and coworkers have developed thermodynamic-based models that can be used to select appropriate solute additions to Fe14Cr base alloys to achieve a contribution to grain-size stabilization and He bubble mitigation by the thermodynamic effect. All such models require approximations and the proposed research was aimed at alloy selection, processing and detailed atomic-level microstructure evaluations to establish the efficacy of the thermodynamic effect. The outcome of this research shows that appropriate alloy additions can produce a contribution from the thermodynamic stabilization effect. Furthermore, due to the oxygen typically present in nominally high purity elemental powders used for powder metallurgy processing, the optimum results obtained appeared as a synergistic combination of nano-size oxide particle pinning kinetic effect and the grain-boundary segregation thermodynamic effect.

Book Structural Alloys for Nuclear Energy Applications

Download or read book Structural Alloys for Nuclear Energy Applications written by Robert Odette and published by Newnes. This book was released on 2019-08-15 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: High-performance alloys that can withstand operation in hazardous nuclear environments are critical to presentday in-service reactor support and maintenance and are foundational for reactor concepts of the future. With commercial nuclear energy vendors and operators facing the retirement of staff during the coming decades, much of the scholarly knowledge of nuclear materials pursuant to appropriate, impactful, and safe usage is at risk. Led by the multi-award winning editorial team of G. Robert Odette (UCSB) and Steven J. Zinkle (UTK/ORNL) and with contributions from leaders of each alloy discipline, Structural Alloys for Nuclear Energy Applications aids the next generation of researchers and industry staff developing and maintaining steels, nickel-base alloys, zirconium alloys, and other structural alloys in nuclear energy applications. This authoritative reference is a critical acquisition for institutions and individuals seeking state-of-the-art knowledge aided by the editors' unique personal insight from decades of frontline research, engineering and management. - Focuses on in-service irradiation, thermal, mechanical, and chemical performance capabilities. - Covers the use of steels and other structural alloys in current fission technology, leading edge Generation-IV fission reactors, and future fusion power reactors. - Provides a critical and comprehensive review of the state-of-the-art experimental knowledge base of reactor materials, for applications ranging from engineering safety and lifetime assessments to supporting the development of advanced computational models.

Book Nanostructured Metals and Alloys

Download or read book Nanostructured Metals and Alloys written by S H Whang and published by Elsevier. This book was released on 2011-03-22 with total page 840 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tensile strength, fatigue strength and ductility are important properties of nanostructured metallic materials, which make them suitable for use in applications where strength or strength-to-weight ratios are important. Nanostructured metals and alloys reviews the latest technologies used for production of these materials, as well as recent advances in research into their structure and mechanical properties.One of the most important issues facing nanostructured metals and alloys is how to produce them. Part one describes the different methods used to process bulk nanostructured metals and alloys, including chapters on severe plastic deformation, mechanical alloying and electrodeposition among others. Part two concentrates on the microstructure and properties of nanostructured metals, with chapters studying deformation structures such as twins, microstructure of ferrous alloys by equal channel angular processing, and characteristic structures of nanostructured metals prepared by plastic deformation. In part three, the mechanical properties of nanostructured metals and alloys are discussed, with chapters on such topics as strengthening mechanisms, nanostructured metals based on molecular dynamics computer simulations, and surface deformation. Part four focuses on existing and developing applications of nanostructured metals and alloys, covering topics such as nanostructured steel for automotives, steel sheet and nanostructured coatings by spraying.With its distinguished editor and international team of contributors, Nanostructured metals and alloys is a standard reference for manufacturers of metal components, as well as those with an academic research interest in metals and materials with enhanced properties.

Book Establishing a Scientific Basis for Optimizing Compositions  Process Paths and Fabrication Methods for Nanostructured Ferritic Alloys for Use in Advanced Fission Energy Systems

Download or read book Establishing a Scientific Basis for Optimizing Compositions Process Paths and Fabrication Methods for Nanostructured Ferritic Alloys for Use in Advanced Fission Energy Systems written by and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The broad objective of this NEUP was to further develop a class of 12-15Cr ferritic alloys that are dispersion strengthened and made radiation tolerant by an ultrahigh density of Y-Ti-O nanofeatures (NFs) in the size range of less than 5 nm. We call these potentially transformable materials nanostructured ferritic alloys (NFAs). NFAs are typically processed by ball milling pre-alloyed rapidly solidified powders and yttria (Y2O3) powders. Proper milling effectively dissolves the Ti, Y and O solutes that precipitate as NFs during hot consolidation. The tasks in the present study included examining alternative processing paths, characterizing and optimizing the NFs and investigating solid state joining. Alternative processing paths involved rapid solidification by gas atomization of Fe, 14% Cr, 3% W, and 0.4% Ti powders that are also pre-alloyed with 0.2% Y (14YWT), where the compositions are in wt.%. The focus is on exploring the possibility of minimizing, or even eliminating, the milling time, as well as producing alloys with more homogeneous distributions of NFs and a more uniform, fine grain size. Three atomization environments were explored: Ar, Ar plus O (Ar/O) and He. The characterization of powders and alloys occurred through each processing step: powder production by gas atomization; powder milling; and powder annealing or hot consolidation by hot isostatic pressing (HIPing) or hot extrusion. The characterization studies of the materials described here include various combinations of: a) bulk chemistry; b) electron probe microanalysis (EPMA); c) atom probe tomography (APT); d) small angle neutron scattering (SANS); e) various types of scanning and transmission electron microscopy (SEM and TEM); and f) microhardness testing. The bulk chemistry measurements show that preliminary batches of gas-atomized powders could be produced within specified composition ranges. However, EPMA and TEM showed that the Y is heterogeneously distributed and phase separated, but TEM, SANS and APT show that attritor milling for 20 to 40 h sufficiently mixes the Y. TEM, SANS and APT showed that subsequent powder annealing treatments result in the precipitation of a high density of NFs. All the annealed powder variants and HIP consolidated alloys had a bimodal distribution of grain sizes; however, APT and TEM show the presence of NFs in both large and small grains. Alloys extruded at 850°C contain a unimodal distribution of fine grains. The initial milling procedures in this study added a significant quantity of O as well as contaminant N to the powders. An improved milling procedure effectively eliminated the contamination resulting in lower O content that was insufficient to produce Y-Ti-O NFs in the size range below 3 nm. TEM showed that the low O resulted in fewer and larger oxide phases that are more highly enriched in Y, resulting in low Vicker's hardness values 250 kg/mm^2 compared to 443 kg/mm^2 in an alloy consolidated from the preliminary powders with higher O content. In order to overcome the problem of O deficiency, FeO additions during 40 h attritor milling were made to increase the O content to a nominal value of 0.135%. The annealed powder and corresponding 1150°C HIP and 850°C extrusion consolidated alloy showed a very uniform distribution of fine scale NFs. The HIP consolidated alloy had promising high temperature creep strength, but low toughness and a high ductile to brittle transition temperature (DBTT). An extruded and cross-rolled alloy processed at 850ðC, however, exhibited a lower DBTT. Also investigated were the effects of Ti and Y content on the NFs in alloys produced from conventionally milled powders that varied Y2O3 from 0.2 to 0.5 wt.% while maintaining Ti/Y atom ratios of 1.6, 2.4, and 3.1. SANS showed the volume fraction and number density of the NFs increases with Y and to a lesser extent Ti. Notably, the NF size and composition are relatively independent of the alloy Y and Ti content, except at the lowest Y2O3 ...

Book Proceedings of the 8th Pacific Rim International Conference on Advanced Materials and Processing  PRICM 8

Download or read book Proceedings of the 8th Pacific Rim International Conference on Advanced Materials and Processing PRICM 8 written by FernD.S. Marquis and published by Springer. This book was released on 2017-03-21 with total page 3431 pages. Available in PDF, EPUB and Kindle. Book excerpt: PRICM-8 features the most prominent and largest-scale interactions in advanced materials and processing in the Pacific Rim region. The conference is unique in its intrinsic nature and architecture which crosses many traditional discipline and cultural boundaries. This is a comprehensive collection of papers from the 15 symposia presented at this event.

Book Materials and Processes for Nuclear Energy Today and in the Future

Download or read book Materials and Processes for Nuclear Energy Today and in the Future written by Fanny Balbaud-Célérier and published by John Wiley & Sons. This book was released on 2024-11-20 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: As a low carbon energy source, nuclear energy plays a reinforced role in a sustainable electricity mix. However, strengthening the share of nuclear energy implies the guarantee of safe, long-term operation of current systems and potentially the fostering of new constructions. Service life extension – as well as the design of future nuclear power plants – relies on the availability of robust and qualified structural materials, and their manufacturing processes. The science and engineering of materials are key in selecting robust material solutions and predicting aging mechanisms. Materials and Processes for Nuclear Energy Today and in the Future reviews different reactor concepts and fuel management systems. Nuclear equipment has to maintain integrity under extreme conditions, such as high temperature, radiation, loads and/or corrosive environments. This book analyzes the requirements on components, and introduces reference solutions regarding materials and processes. It describes the materials’ main properties, their limits and the current R&D trends. Lastly, innovations are discussed, such as materials with enhanced properties, advanced manufacturing or using AI.

Book Magnetic Small Angle Neutron Scattering

Download or read book Magnetic Small Angle Neutron Scattering written by Andreas Michels and published by Oxford University Press. This book was released on 2021 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Magnetic Small-Angle Neutron Scattering provides the first extensive treatment of magnetic small-angle neutron scattering (SANS). The theoretical background required to compute magnetic SANS cross sections and correlation functions related to long-wavelength magnetization structures is laidout. The concepts are scrutinized based on the discussion of experimental neutron data. Regarding prior background knowledge, some familiarity with the basic magnetic interactions and phenomena as well as scattering theory is desired.Besides exposing the different origins of magnetic SANS, and furnishing the basics of the magnetic SANS technique in early chapters, a large part of the book is devoted to a comprehensive treatment of the continuum theory of micromagnetics, as it is relevant for the study of the elastic magneticSANS cross section. Analytical expressions for the magnetization Fourier components allow to highlight the essential features of magnetic SANS and to analyze experimental data both in reciprocal, as well as in real space. Later chapters provide an overview on the magnetic SANS of nanoparticles andso-called complex systems (e.g., ferrofluids, magnetic steels, spin glasses and amorphous magnets). It is this subfield where major progress is expected to be made in the coming years, mainly via the increased usage of numerical micromagnetic simulations (Chapter 7), which is a very promisingapproach for the understanding of the magnetic SANS from systems exhibiting nanoscale spin inhomogeneity.

Book Stability of Model Fe Cr Al Alloys Under The Presence of Neutron Radiation

Download or read book Stability of Model Fe Cr Al Alloys Under The Presence of Neutron Radiation written by and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nanoalloys

Download or read book Nanoalloys written by Florent Calvo and published by Elsevier. This book was released on 2020-06-26 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoalloys, Second Edition, provides a self-contained reference on the physics and chemistry of nanoscale alloys, dealing with all important aspects that range from the theoretical concepts and the practical synthesis methods to the characterization tools. The book also covers modern applications of nanoalloys in materials science, catalysis or nanomedicine and discusses their possible toxicity. - Covers fundamentals and applicative aspects of nanoalloys in a balanced presentation, including theoretical and experimental perspectives - Describes physical and chemical approaches, synthesis and characterization tools - Illustrates the potential benefit of alloying on various applications ranging from materials science to energy production and nanomedicine - Updates and adds topics not fully developed at the time of the 1st edition, such as toxicity and energy applications

Book Introduction to Materials for Advanced Energy Systems

Download or read book Introduction to Materials for Advanced Energy Systems written by Colin Tong and published by Springer. This book was released on 2018-12-12 with total page 930 pages. Available in PDF, EPUB and Kindle. Book excerpt: This first of its kind text enables today’s students to understand current and future energy challenges, to acquire skills for selecting and using materials and manufacturing processes in the design of energy systems, and to develop a cross-functional approach to materials, mechanics, electronics and processes of energy production. While taking economic and regulatory aspects into account, this textbook provides a comprehensive introduction to the range of materials used for advanced energy systems, including fossil, nuclear, solar, bio, wind, geothermal, ocean and hydropower, hydrogen, and nuclear, as well as thermal energy storage and electrochemical storage in fuel cells. A separate chapter is devoted to emerging energy harvesting systems. Integrated coverage includes the application of scientific and engineering principles to materials that enable different types of energy systems. Properties, performance, modeling, fabrication, characterization and application of structural, functional and hybrid materials are described for each energy system. Readers will appreciate the complex relationships among materials selection, optimizing design, and component operating conditions in each energy system. Research and development trends of novel emerging materials for future hybrid energy systems are also considered. Each chapter is basically a self-contained unit, easily enabling instructors to adapt the book for coursework. This textbook is suitable for students in science and engineering who seek to obtain a comprehensive understanding of different energy processes, and how materials enable energy harvesting, conversion, and storage. In setting forth the latest advances and new frontiers of research, the text also serves as a comprehensive reference on energy materials for experienced materials scientists, engineers, and physicists. Includes pedagogical features such as in-depth side bars, worked-out and end-of- chapter exercises, and many references to further reading Provides comprehensive coverage of materials-based solutions for major and emerging energy systems Brings together diverse subject matter by integrating theory with engaging insights

Book Radiation Tolerance of Neutron Irradiated Model Fe Cr Al Alloys

Download or read book Radiation Tolerance of Neutron Irradiated Model Fe Cr Al Alloys written by and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The Fe Cr Al alloy system has the potential to form an important class of enhanced accident-tolerant cladding materials in the nuclear power industry owing to the alloy system's higher oxidation resistance in high-temperature steam environments compared with traditional zirconium-based alloys. However, radiation tolerance of Fe Cr Al alloys has not been fully established. In this study, a series of Fe Cr Al alloys with 10 18 wt % Cr and 2.9 4.9 wt % Al were neutron irradiated at 382 C to 1.8 dpa to investigate the irradiation-induced microstructural and mechanical property evolution as a function of alloy composition. Dislocation loops with Burgers vector of a/2 111 and a 100 were detected and quantified. Results indicate precipitation of Cr-rich is primarily dependent on the bulk chromium composition. Mechanical testing of sub-size-irradiated tensile specimens indicates the hardening response seen after irradiation is dependent on the bulk chromium composition. A structure property relationship was developed; it indicated that the change in yield strength after irradiation is caused by the formation of these radiation-induced defects and is dominated by the large number density of Cr-rich precipitates at sufficiently high chromium contents after irradiation.

Book Experimental and numerical studies on liquid metal cooled fast reactors

Download or read book Experimental and numerical studies on liquid metal cooled fast reactors written by Songbai Cheng and published by Frontiers Media SA. This book was released on 2023-03-03 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book High Energy Ball Milling

Download or read book High Energy Ball Milling written by Małgorzata Sopicka-Lizer and published by Elsevier. This book was released on 2010-05-24 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mechanochemical processing is a novel and cost effective method of producing a wide range of nanopowders. It involves the use of a high energy ball mill to initiate chemical reactions and structural changes. High energy ball milling: Mechanochemical processing of nanopowders reviews the latest techniques in mechanochemistry and how they can be applied to the synthesis and processing of various high-tech materials.Part one discusses the basic science of mechanochemistry with chapters on such topics as the mechanism and kinetics of mechanochemical processes, kinetic behaviour in mechanochemically-induced structural and chemical transformations and materials design through mechanochemical processing. Part two reviews mechanochemical treatment of different materials including synthesis of complex ceramic oxides, production of intermetallic compound powders, synthesis of organic compounds, synthesis of metallic-ceramic composite powders and activation of covalent bond-based materials. Part three covers mechanochemical processes in metal powder systems and other applications with coverage of topics such as plating and surface modification using ultrasonic vibrations, activated powders as precursors for spark plasma sintering, titanium dioxide photocatalyst synthesis by mechanochemical doping and synthesis of materials for lithium-ion batteries.With its distinguished editor and international team of contributors, High energy ball milling: Mechanochemical processing of nanopowders is a standard reference for all those involved in the production of ceramic and metallic components using sintering and other powder metallurgy techniques to produce net shape components. - Examines the latest techniques in mechanochemistry and how they can be applied to the synthesis and processing of various high-tech materials - Discusses the basic science of mechanochemistry including kinetic behaviour, processes and mechanisms and materials design through mechanochemical processing - Reviews mechanochemical treatment of different materials including synthesis of ceramic oxides, organic compounds and metallic-ceramic composite powders

Book Nanotechnology for Energy Sustainability

Download or read book Nanotechnology for Energy Sustainability written by Baldev Raj and published by John Wiley & Sons. This book was released on 2017-01-27 with total page 1487 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dieses Referenzwerk in drei handlichen Bänden bietet einen detaillierten Überblick über Anwendungen der Nanotechnologie im Bereich Nachhaltigkeit in der Energieversorgung. Der erste Band dieses klar strukturierten Nachschlagewerks behandelt nach der Einleitung die Themen Energieerzeugung, erneuerbare Energien, Energiespeicherung, Energieverteilung sowie Energieumwandlung und Energy-Harvesting. Im zweiten Band werden auf Nanotechnologie basierte Materialen, Energieeinsparung und -management, technologische und urheberrechtlich relevante Fragen, Märkte und Umweltsanierung erörtert. Der dritte Band wirft einen Blick in die Zukunft, auf technologische Fortschritte und gibt Empfehlungen. Ein wichtiges Handbuch für alle Experten auf diesem Gebiet, von Forschern und Ingenieuren im wissenschaftlichen Bereich bis hin zu Entwicklern in der Industrie.

Book Environmental Degradation of Advanced and Traditional Engineering Materials

Download or read book Environmental Degradation of Advanced and Traditional Engineering Materials written by Lloyd H. Hihara and published by CRC Press. This book was released on 2013-10-23 with total page 722 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the main, ongoing challenges for any engineering enterprise is that systems are built of materials subject to environmental degradation. Whether working with an airframe, integrated circuit, bridge, prosthetic device, or implantable drug-delivery system, understanding the chemical stability of materials remains a key element in determining their useful life. Environmental Degradation of Advanced and Traditional Engineering Materials is a monumental work for the field, providing comprehensive coverage of the environmental impacts on the full breadth of materials used for engineering infrastructure, buildings, machines, and components. The book discusses fundamental degradation processes and presents examples of degradation under various environmental conditions. Each chapter presents the basic properties of the class of material, followed by detailed characteristics of degradation, guidelines on how to protect against corrosion, and a description of testing procedures. A complete, self-contained industrial reference guide, this valuable resource is designed for students and professionals interested in the development of deterioration-resistant technological systems constructed with metallurgical, polymeric, ceramic, and natural materials.

Book Comprehensive Nuclear Materials

Download or read book Comprehensive Nuclear Materials written by and published by Elsevier. This book was released on 2020-07-22 with total page 4871 pages. Available in PDF, EPUB and Kindle. Book excerpt: Materials in a nuclear environment are exposed to extreme conditions of radiation, temperature and/or corrosion, and in many cases the combination of these makes the material behavior very different from conventional materials. This is evident for the four major technological challenges the nuclear technology domain is facing currently: (i) long-term operation of existing Generation II nuclear power plants, (ii) the design of the next generation reactors (Generation IV), (iii) the construction of the ITER fusion reactor in Cadarache (France), (iv) and the intermediate and final disposal of nuclear waste. In order to address these challenges, engineers and designers need to know the properties of a wide variety of materials under these conditions and to understand the underlying processes affecting changes in their behavior, in order to assess their performance and to determine the limits of operation. Comprehensive Nuclear Materials, Second Edition, Seven Volume Set provides broad ranging, validated summaries of all the major topics in the field of nuclear material research for fission as well as fusion reactor systems. Attention is given to the fundamental scientific aspects of nuclear materials: fuel and structural materials for fission reactors, waste materials, and materials for fusion reactors. The articles are written at a level that allows undergraduate students to understand the material, while providing active researchers with a ready reference resource of information. Most of the chapters from the first Edition have been revised and updated and a significant number of new topics are covered in completely new material. During the ten years between the two editions, the challenge for applications of nuclear materials has been significantly impacted by world events, public awareness, and technological innovation. Materials play a key role as enablers of new technologies, and we trust that this new edition of Comprehensive Nuclear Materials has captured the key recent developments. Critically reviews the major classes and functions of materials, supporting the selection, assessment, validation and engineering of materials in extreme nuclear environments Comprehensive resource for up-to-date and authoritative information which is not always available elsewhere, even in journals Provides an in-depth treatment of materials modeling and simulation, with a specific focus on nuclear issues Serves as an excellent entry point for students and researchers new to the field