EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Nanoscale Thermodynamics

Download or read book Nanoscale Thermodynamics written by Signe Kjelstrup and published by MDPI. This book was released on 2021-09-01 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Special Issue concerns the development of a theory for energy conversion on the nanoscale, namely, nanothermodynamics. The theory has been applied to porous media, small surfaces, clusters or fluids under confinement. The number of unsolved issues in these contexts is numerous and the present efforts are only painting part of the broader picture. We attempt to answer the following: How far down in scale does the Gibbs equation apply? Which theory can replace it beyond the thermodynamic limit? It is well known that confinement changes the equation of state of a fluid, but how does confinement change the equilibrium conditions themselves? This Special Issue explores some of the roads that were opened up for us by Hill with the idea of nanothermodynamics. The experimental progress in nanotechnology is advancing rapidly. It is our ambition with this book to inspire an increased effort in the development of suitable theoretical tools and methods to help further progress in nanoscience. All ten contributions to this Special Issue can be seen as efforts to support, enhance and validate the theoretical foundation of Hill.

Book Nanoscale Thermodynamics

    Book Details:
  • Author : Signe Kjelstrup
  • Publisher :
  • Release : 2021
  • ISBN : 9783036511696
  • Pages : 168 pages

Download or read book Nanoscale Thermodynamics written by Signe Kjelstrup and published by . This book was released on 2021 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Special Issue concerns the development of a theory for energy conversion on the nanoscale, namely, nanothermodynamics. The theory has been applied to porous media, small surfaces, clusters or fluids under confinement. The number of unsolved issues in these contexts is numerous and the present efforts are only painting part of the broader picture. We attempt to answer the following: How far down in scale does the Gibbs equation apply? Which theory can replace it beyond the thermodynamic limit? It is well known that confinement changes the equation of state of a fluid, but how does confinement change the equilibrium conditions themselves? This Special Issue explores some of the roads that were opened up for us by Hill with the idea of nanothermodynamics. The experimental progress in nanotechnology is advancing rapidly. It is our ambition with this book to inspire an increased effort in the development of suitable theoretical tools and methods to help further progress in nanoscience. All ten contributions to this Special Issue can be seen as efforts to support, enhance and validate the theoretical foundation of Hill.

Book Nanoscale Thermoelectrics

Download or read book Nanoscale Thermoelectrics written by Xiaodong Wang and published by Springer Science & Business Media. This book was released on 2013-11-18 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the efficient utilization of energy resources and the minimization of environmental damage, thermoelectric materials can play an important role by converting waste heat into electricity directly. Nanostructured thermoelectric materials have received much attention recently due to the potential for enhanced properties associated with size effects and quantum confinement. Nanoscale Thermoelectrics describes the theory underlying these phenomena, as well as various thermoelectric materials and nanostructures such as carbon nanotubes, SiGe nanowires, and graphene nanoribbons. Chapters written by leading scientists throughout the world are intended to create a fundamental bridge between thermoelectrics and nanotechnology, and to stimulate readers' interest in developing new types of thermoelectric materials and devices for power generation and other applications. Nanoscale Thermoelectrics is both a comprehensive introduction to the field and a guide to further research, and can be recommended for Physics, Electrical Engineering, and Materials Science departments.

Book Nanoscale Science and Technology

Download or read book Nanoscale Science and Technology written by Robert Kelsall and published by John Wiley & Sons. This book was released on 2005-04-15 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: Die Nanotechnologie ist ein relativ junges, stark aufstrebendes Forschungsgebiet. Durch seine ausgeprägte Interdisziplinarität müssen sich Absolventen der einzelnen naturwissenschaftlichen Fachrichtungen (etwa Physik, Chemie, Materialwissenschaften) gezielt weiterbilden, um in die Nanotechnologie einsteigen zu können. Als eines der ersten einschlägigen Bücher bereitet dieses Werk das Gebiet praxisorientiert und anschaulich speziell für diesen Zweck auf.

Book Thermal Transport in Low Dimensions

Download or read book Thermal Transport in Low Dimensions written by Stefano Lepri and published by Springer. This book was released on 2016-04-07 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding non-equilibrium properties of classical and quantum many-particle systems is one of the goals of contemporary statistical mechanics. Besides its own interest for the theoretical foundations of irreversible thermodynamics(e.g. of the Fourier's law of heat conduction), this topic is also relevant to develop innovative ideas for nanoscale thermal management with possible future applications to nanotechnologies and effective energetic resources. The first part of the volume (Chapters 1-6) describes the basic models, the phenomenology and the various theoretical approaches to understand heat transport in low-dimensional lattices (1D e 2D). The methods described will include equilibrium and nonequilibrium molecular dynamics simulations, hydrodynamic and kinetic approaches and the solution of stochastic models. The second part (Chapters 7-10) deals with applications to nano and microscale heat transfer, as for instance phononic transport in carbon-based nanomaterials, including the prominent case of nanotubes and graphene. Possible future developments on heat flow control and thermoelectric energy conversion will be outlined. This volume aims at being the first step for graduate students and researchers entering the field as well as a reference for the community of scientists that, from different backgrounds (theoretical physics, mathematics, material sciences and engineering), has grown in the recent years around those themes.

Book Quantum Thermodynamic Processes

Download or read book Quantum Thermodynamic Processes written by Guenter Mahler and published by CRC Press. This book was released on 2014-12-19 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt: The point of departure of this book is a triad of themes: information theory, thermodynamics, and quantum mechanics. These are related: thermodynamics and quantum mechanics form the basis of quantum thermodynamics; information and quantum mechanics underly, inter alia, the notorious quantum measurement problem; and information and thermodynamics ha

Book Thermal Nanosystems and Nanomaterials

Download or read book Thermal Nanosystems and Nanomaterials written by Sebastian Volz and published by Springer Science & Business Media. This book was released on 2009-12-24 with total page 597 pages. Available in PDF, EPUB and Kindle. Book excerpt: Heat transfer laws for conduction, radiation and convection change when the dimensions of the systems in question shrink. The altered behaviours can be used efficiently in energy conversion, respectively bio- and high-performance materials to control microelectronic devices. To understand and model those thermal mechanisms, specific metrologies have to be established. This book provides an overview of actual devices and materials involving micro-nanoscale heat transfer mechanisms. These are clearly explained and exemplified by a large spectrum of relevant physical models, while the most advanced nanoscale thermal metrologies are presented.

Book Nanoscale Multifunctional Materials

Download or read book Nanoscale Multifunctional Materials written by Sharmila M. Mukhopadhyay and published by John Wiley & Sons. This book was released on 2011-08-26 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: A multidisciplinary approach that explores the diverse properties, functions, and applications of nanomaterials Drawing together the many scientific and engineering disciplines underlying the development of nanomaterials, Nanoscale Multifunctional Materials provides a multidisciplinary review of the diverse properties, functions, and applications of nanomaterials. The book examines both nanoparticles, which have larger-scale equivalents, and uniquely assembled nanomaterials, which do not have larger-scale equivalents. Readers will gain a tremendous appreciation of the versatility of nanomaterials as well as an understanding of how the same nanomaterial can have several distinct applications across a broad range of fields and industries. Nanoscale Multifunctional Materials is divided into three sections: Section I, Overview, describes the scientific phenomena underlying the special properties of nanomaterials, making them desirable as novel materials and different from conventional solids. Next, readers will learn about the effect of nanomaterials on contemporary society as well as future trends in nanomaterials production and use. Section II, Processing and Analysis, explores several experimental approaches in nanomaterial fabrication and characterization as well as in theoretical approaches in modeling and simulation. Section III, Applications, offers detailed examples of nanomaterial applications in alternative energy, thermal management, environmental cleanup, water treatment, and biomedicine. Each chapter has been written by one or more leading experts in the science, engineering, and application of nanomaterials. Within each chapter, readers will find a thorough review of the current literature, with references to facilitate further investigation of individual topics. Underscoring the multidisciplinary and multifunctional characteristics of nanomaterials, this book is recommended for students and professionals in science and engineering who need a broad perspective on both the nature and application of nanomaterials. The text also sets the stage for the development of new nanomaterials and new applications.

Book Nano Microscale Heat Transfer

Download or read book Nano Microscale Heat Transfer written by Zhuomin M. Zhang and published by Springer Nature. This book was released on 2020-06-23 with total page 780 pages. Available in PDF, EPUB and Kindle. Book excerpt: This substantially updated and augmented second edition adds over 200 pages of text covering and an array of newer developments in nanoscale thermal transport. In Nano/Microscale Heat Transfer, 2nd edition, Dr. Zhang expands his classroom-proven text to incorporate thermal conductivity spectroscopy, time-domain and frequency-domain thermoreflectance techniques, quantum size effect on specific heat, coherent phonon, minimum thermal conductivity, interface thermal conductance, thermal interface materials, 2D sheet materials and their unique thermal properties, soft materials, first-principles simulation, hyperbolic metamaterials, magnetic polaritons, and new near-field radiation experiments and numerical simulations. Informed by over 12 years use, the author’s research experience, and feedback from teaching faculty, the book has been reorganized in many sections and enriched with more examples and homework problems. Solutions for selected problems are also available to qualified faculty via a password-protected website.• Substantially updates and augments the widely adopted original edition, adding over 200 pages and many new illustrations;• Incorporates student and faculty feedback from a decade of classroom use;• Elucidates concepts explained with many examples and illustrations;• Supports student application of theory with 300 homework problems;• Maximizes reader understanding of micro/nanoscale thermophysical properties and processes and how to apply them to thermal science and engineering;• Features MATLAB codes for working with size and temperature effects on thermal conductivity, specific heat of nanostructures, thin-film optics, RCWA, and near-field radiation.

Book Introduction to Nanoscience and Nanotechnology

Download or read book Introduction to Nanoscience and Nanotechnology written by Gabor L. Hornyak and published by CRC Press. This book was released on 2008-12-22 with total page 1635 pages. Available in PDF, EPUB and Kindle. Book excerpt: The maturation of nanotechnology has revealed it to be a unique and distinct discipline rather than a specialization within a larger field. Its textbook cannot afford to be a chemistry, physics, or engineering text focused on nano. It must be an integrated, multidisciplinary, and specifically nano textbook. The archetype of the modern nano textbook

Book Nano scale Materials

    Book Details:
  • Author : S. N. Sahu
  • Publisher : Nova Publishers
  • Release : 2006
  • ISBN : 9781594549106
  • Pages : 496 pages

Download or read book Nano scale Materials written by S. N. Sahu and published by Nova Publishers. This book was released on 2006 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nano-Scale Materials - From Science to Technology

Book Thermal Transport in Carbon Based Nanomaterials

Download or read book Thermal Transport in Carbon Based Nanomaterials written by Gang Zhang and published by Elsevier. This book was released on 2017-06-13 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermal Transport in Carbon-Based Nanomaterials describes the thermal properties of various carbon nanomaterials and then examines their applications in thermal management and renewable energy. Carbon nanomaterials include: one-dimensional (1D) structures, like nanotubes; two-dimensional (2D) crystal lattice with only one-atom-thick planar sheets, like graphenes; composites based on carbon nanotube or graphene, and diamond nanowires and thin films. In the past two decades, rapid developments in the synthesis and processing of carbon-based nanomaterials have created a great desire among scientists to gain a greater understanding of thermal transport in these materials. Thermal properties in nanomaterials differ significantly from those in bulk materials because the characteristic length scales associated with the heat carriers, phonons, are comparable to the characteristic length. Carbon nanomaterials with high thermal conductivity can be applied in heat dissipation. This looks set to make a significant impact on human life and, with numerous commercial developments emerging, will become a major academic topic over the coming years. This authoritative and comprehensive book will be of great use to both the existing scientific community in this field, as well as for those who wish to enter it. - Includes coverage of the most important and commonly adopted computational and experimental methods to analyze thermal properties in carbon nanomaterials - Contains information about the growth of carbon nanomaterials, their thermal properties, and strategies to control thermal properties and applications, allowing readers to assess how to use each material most efficiently - Offers a comprehensive overview of the theoretical background behind thermal transport in carbon nanomaterials

Book Thermometry at the Nanoscale

Download or read book Thermometry at the Nanoscale written by Luís Dias Carlos and published by Royal Society of Chemistry. This book was released on 2016 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covers the fundamentals of measuring temperature at the nanoscale, luminescence-based and non-luminescence based thermometry techniques, and applications.

Book Nanoscale Energy Transport and Conversion

Download or read book Nanoscale Energy Transport and Conversion written by Gang Chen and published by Oxford University Press. This book was released on 2005-03-03 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a graduate level textbook in nanoscale heat transfer and energy conversion that can also be used as a reference for researchers in the developing field of nanoengineering. It provides a comprehensive overview of microscale heat transfer, focusing on thermal energy storage and transport. Chen broadens the readership by incorporating results from related disciplines, from the point of view of thermal energy storage and transport, and presents related topics on the transport of electrons, phonons, photons, and molecules. This book is part of the MIT-Pappalardo Series in Mechanical Engineering.

Book Microscale and Nanoscale Heat Transfer

Download or read book Microscale and Nanoscale Heat Transfer written by Mourad Rebay and published by CRC Press. This book was released on 2016-01-06 with total page 499 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microscale and Nanoscale Heat Transfer: Analysis, Design, and Applications features contributions from prominent researchers in the field of micro- and nanoscale heat transfer and associated technologies and offers a complete understanding of thermal transport in nano-materials and devices. Nanofluids can be used as working fluids in thermal system

Book Thermal Energy

Download or read book Thermal Energy written by Yatish T. Shah and published by CRC Press. This book was released on 2018-01-12 with total page 854 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book details sources of thermal energy, methods of capture, and applications. It describes the basics of thermal energy, including measuring thermal energy, laws of thermodynamics that govern its use and transformation, modes of thermal energy, conventional processes, devices and materials, and the methods by which it is transferred. It covers 8 sources of thermal energy: combustion, fusion (solar) fission (nuclear), geothermal, microwave, plasma, waste heat, and thermal energy storage. In each case, the methods of production and capture and its uses are described in detail. It also discusses novel processes and devices used to improve transfer and transformation processes.

Book Kinetics and Thermodynamics of Multistep Nucleation and Self Assembly in Nanoscale Materials  Volume 151

Download or read book Kinetics and Thermodynamics of Multistep Nucleation and Self Assembly in Nanoscale Materials Volume 151 written by Gregoire Nicolis and published by John Wiley & Sons. This book was released on 2012-05-22 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Advances in Chemical Physics series—the cutting edge of research in chemical physics The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series presents contributions from internationally renowned chemists and serves as the perfect supplement to any advanced graduate class devoted to the study of chemical physics. This volume explores: Kinetics and thermodynamics of fluctuation-induced transitions in multistable systems (G. Nicolis and C. Nicolis) Dynamical rare event simulation techniques for equilibrium and nonequilibrium systems (Titus S. van Erp) Confocal depolarized dynamic light scattering (M. Potenza, T. Sanvito, V. Degiorgio, and M. Giglio) The two-step mechanism and the solution-crystal spinodal for nucleation of crystals in solution (Peter G. Vekilov) Experimental studies of two-step nucleation during two-dimensional crystallization of colloidal particles with short-range attraction (John R. Savage, Liquan Pei, and Anthony D. Dinsmore) On the role of metastable intermediate states in the homogeneous nucleation of solids from solution (James F. Lutsko) Effects of protein size on the high-concentration/low-concentration phase transition (Patrick Grosfils) Geometric constraints in the self-assembly of mineral dendrites and platelets (John J. Kozak) What can mesoscopic level in situ observations teach us about kinetics and thermodynamics of protein crystallization? (Mike Sleutel, Dominique Maes, and Alexander Van Driessche) The ability of silica to induce biomimetic crystallization of calcium carbonate (Matthias Kellermeier, Emilio Melero-GarcÍa, Werner Kunz, and Juan Manuel GarcÍa-Ruiz)