EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Nanoscale Thermal and Thermoelectric Energy Transport in Crystalline and Disordered Materials

Download or read book Nanoscale Thermal and Thermoelectric Energy Transport in Crystalline and Disordered Materials written by Jiawei Zhou and published by . This book was released on 2019 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: Energy transport provides the fundamental basis for operation of devices from transistors to solar cells. Despite past theories that successfully illustrate the principles behind the energy transport based on solid state physics, the microscopic details of the energy transport are not always clear due to the lack of tool to quantify the contribution from different degrees of freedom. Recent progress in first principles computations and development in optical characterization has offered us new ways to understand the energy transport at the nanoscale in a quantitative way. In this thesis, by leveraging these techniques, we aim to providing a detailed understanding of thermal and thermoelectric energy transport in crystalline and disordered materials, especially about how the energy transport depends on atomistic level details such as chemical bondings. Specifically, we will discuss three examples. 1) Electron transport in semiconductors: how electrons propagate as they interact with lattice and impurities. 2) Interaction between charge and heat: how the free carriers have an impact on the heat dissipation in semiconductors 3) Heat conduction in polymers: how the heat transfer in an amorphous system depends on its molecular structures. In the case of electron transport, we developed and applied first principles simulation to show that a large electron mobility can benefit from symmetry-protected non-bonding orbitals. Such orbitals result in weak electron-lattice coupling that explains the unusually large power factors in half-Heusler materials - a good thermoelectric material system. By devising an optical experiment to probe the ultrafast thermal decay, we quantified the effect of electron-phonon interaction on the thermal transport. Our results show that the thermal conductivity can be significantly affected by the free carriers. Lastly, we built a theoretical model to understand the heat conduction in amorphous polymers, and used this knowledge to design materials that are heat-conducting yet soft. These understandings will potentially facilitate discovery of new material systems with beneficial charge and heat transport characteristic.

Book Thermal Transport in Nanoporous Materials for Energy Applications

Download or read book Thermal Transport in Nanoporous Materials for Energy Applications written by Jin Fang and published by . This book was released on 2012 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present study investigates the complex relationship between nanostructures and microscale thermal transport in nanoporous thin films for energy applications. It experimentally and numerically demonstrates that the effective thermal conductivity of nanoporous materials can be tuned by controlling their nanoscale architectures including porosity, pore diameter, wall thickness, nanocrystal size, and crystallinity as well as surface passivation. This study reports measurements of the cross-plane thermal conductivity of nanoporous thin films with various architectures between 25 and 315 K. Physics-based models combining phonon transport theory and effective medium approximations were developed to interpret the experimental data. Ordered mesoporous titania and silicon thin films were prepared based on evaporation-induced self-assembly method. Pure silica zeolite films were produced by either in-situ growth or by spin coating a zeolite nanoparticle suspension followed by crystal growth upon heating. These synthesized thin films were systematically and fully characterized. They featured ordered nanopores with porosity, pore diameter, and film thickness ranging from 30% to 59%, 0.5 to 25 nm, and 120 to 370 nm, respectively. Their dense matrix was amorphous, polycrystalline, or consisted of an aggregate of nanocrystals. The thermal conductivity of all synthesized nanoporous films increased monotonically with temperature within the temperature range considered. At low temperatures, the nanoporous films behaved like amorphous or strongly disordered materials and their thermal conductivity was proportional to T^n with n varied between 1 and 2.3. At high temperatures, the thermal conductivity increased slowly with temperature or reached a plateau due to strong phonon Umklapp scattering and the saturation of phonon modes. The presence of pores in amorphous mesoporous thin films had a purely geometrical effect by reducing the cross-sectional area through which heat can diffuse. By contrast, in crystalline mesoporous thin films the presence of pores also increased phonon scattering. In addition, the film thickness generally did not affect the measured thermal conductivity. Indeed, phonon scattering by pores and by nanocrystal grain boundary dominated over boundary scattering and were identified as the dominant scattering mechanisms for nanoscale energy transport in the synthesized nanoporous films. This study further establishes that the effective thermal conductivity keff of crystalline nanoporous silicon was strongly affected not only by the porosity fv and the system's length Lz but also by the pore interfacial area concentration Ai. A modified effective medium approximation combining kinetic theory and the coherent potential approximation suggested that keff was proportional to (1-1.5fv) and inversely proportional to the sum (Ai/4+1/Lz). This scaling law was in excellent agreement with the thermal conductivity of nanoporous silicon predicted by molecular dynamics simulations for spherical pores as well as for cylindrical pores and vacancy defects. Finally, this study demonstrated, using equilibrium molecular dynamics simulations, that surface passivation added another parameter for reducing the thermal conductivity of nanostructured materials. To do so, there should be strong acoustic vibrational modes coupling between surface and passivation atoms. For example, oxygen passivation reduced the thermal conductivity of nanoporous crystalline silicon. In addition, the effect of passivation reduced with temperature because of increasing contribution of Umklapp scattering. These results could help establish new strategies to control the thermal conductivity of nanoporous materials for a wide range of applications including thermoelectric devices, supercapacitors, dye-sensitized solar cells, and hydrogen storage devices.

Book Advances in Thermoelectricity  Foundational Issues  Materials and Nanotechnology

Download or read book Advances in Thermoelectricity Foundational Issues Materials and Nanotechnology written by D. Narducci and published by IOS Press. This book was released on 2021-06-22 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of thermoelectricity has continued to develop rapidly in recent years and remains one of the most exciting areas of research for a materials physicist. The need for sustainable energy has added a technological momentum to the challenge of devising materials with exceptional properties such as low thermal conductivity, high electrical conductivity and a large Seebeck coefficient, and has triggered a global, interdisciplinary effort. More recently, research on thermoelectric materials has promoted and motivated a major research endeavor to clarify the factors affecting thermal conductivity in nanostructures as part of a more general effort to apply nanotechnology to enhance the performance of thermoelectric materials for use in thermoelectric generators and coolers. This book contains the lectures presented as Course 207 of the International School of Physics Enrico Fermi, Advances in Thermoelectricity: Foundational Issues, Materials, and Nanotechnology, held in Varenna, Italy from 15 – 20 July 2019. This comprehensive course aimed to provide students with a modern vision of the physics of thermoelectric phenomena, starting from the thermodynamics of thermoelectricity and from the physics of transport processes and demonstrating how material structure and nanostructure, together with defects, have been used to tailor the physical properties of advanced thermoelectrics. Special attention was also given to areas of current research – from spin-caloritronics to charge transport in polymers – and to a selected number of applications for heat recovery. Encompassing the full complexity of modern thermoelectricity and covering the most cogent themes relevant to current research, the book will be of interest to all those working in the field.

Book Exploring Electron and Phonon Transport at the Nanoscale for Thermoelectric Energy Conversion

Download or read book Exploring Electron and Phonon Transport at the Nanoscale for Thermoelectric Energy Conversion written by Austin Jerome Minnich and published by . This book was released on 2011 with total page 155 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermoelectric materials are capable of solid-state direct heat to electricity energy conversion and are ideal for waste heat recovery applications due to their simplicity, reliability, and lack of environmentally harmful working fluids. Recently, nanostructured thermoelectrics have demonstrated remarkably enhanced energy conversion efficiencies, primarily due to a reduction in lattice thermal conductivity. Despite these advances, much remains unknown about heat transport in these materials, and further efficiency improvements will require a detailed understanding of how the heat carriers, electrons and phonons, are affected by nanostructures. To elucidate these processes, in this thesis we investigate nanoscale transport using both modeling and experiment. The first portion of the thesis studies how electrons and phonons are affected by grain boundaries in nanocomposite thermoelectric materials, where the grain sizes are smaller than mean free paths (MFPs). We use the Boltzmann transport equation (BTE) and a new grain boundary scattering model to understand how thermoelectric properties are affected in nanocomposites, as well as to identify strategies which could lead to more efficient materials. The second portion of the thesis focuses on determining how to more directly measure heat carrier properties like frequency-dependent MFPs. Knowledge of phonon MFPs is crucial to understanding and engineering nanoscale transport, yet MFPs are largely unknown even for bulk materials and few experimental techniques exist to measure them. We show that performing macroscopic measurements cannot reveal the MFPs; instead, we must study transport at the scales of the MFPs, in the quasi- ballistic transport regime. To investigate transport at these small length scales, we first numerically solve the frequency-dependent phonon BTE, which is valid even in the absence of local thermal equilibrium, unlike heat diffusion theory. Next, we introduce a novel thermal conductivity spectroscopy technique which can measure MFP distributions over a wide range of length scales and materials using observations of quasi-ballistic heat transfer in a pump-probe experiment. By observing the changes in thermal resistance as a heated area size is systematically varied, the thermal conductivity contributions from different MFP phonons can be determined. We present the first experimental measurements of the MFP distribution in silicon at cryogenic temperatures. Finally, we develop a modification of this technique which permits us to study transport at scales much smaller than the diffraction limit of approximately one micron. It is important to access these length scales as many technologically relevant materials like thermoelectrics have MFPs in the deep submicron regime. To beat the diffraction limit, we use electron-beam lithography to pattern metallic nano dot arrays with diameters in the hundreds of nanometers range. Because the effective length scale for heat transfer is the dot diameter rather than the optical beam diameter, we are able to study nanoscale heat transfer while still achieving ultrafast time resolution. We demonstrate the modified technique by measuring the MFP distribution in sapphire. Considering the crucial importance of the knowledge of MFPs to understanding and engineering nanoscale transport, we expect these newly developed techniques to be useful for a variety of energy applications, particularly for thermoelectrics, as well as for gaining a fundamental understanding of nanoscale heat transport.

Book Phonon Thermal Transport in Silicon Based Nanomaterials

Download or read book Phonon Thermal Transport in Silicon Based Nanomaterials written by Hai-Peng Li and published by Springer. This book was released on 2018-09-08 with total page 94 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this Brief, authors introduce the advance in theoretical and experimental techniques for determining the thermal conductivity in nanomaterials, and focus on review of their recent theoretical studies on the thermal properties of silicon–based nanomaterials, such as zero–dimensional silicon nanoclusters, one–dimensional silicon nanowires, and graphenelike two–dimensional silicene. The specific subject matters covered include: size effect of thermal stability and phonon thermal transport in spherical silicon nanoclusters, surface effects of phonon thermal transport in silicon nanowires, and defects effects of phonon thermal transport in silicene. The results obtained are supplemented by numerical calculations, presented as tables and figures. The potential applications of these findings in nanoelectrics and thermoelectric energy conversion are also discussed. In this regard, this Brief represents an authoritative, systematic, and detailed description of the current status of phonon thermal transport in silicon–based nanomaterials. This Brief should be a highly valuable reference for young scientists and postgraduate students active in the fields of nanoscale thermal transport and silicon-based nanomaterials.

Book Nanostructured Semiconductors

Download or read book Nanostructured Semiconductors written by Konstantinos Termentzidis and published by CRC Press. This book was released on 2017-09-01 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is devoted to nanostructures and nanostructured materials containing both amorphous and crystalline phases with a particular focus on their thermal properties. It is the first time that theoreticians and experimentalists from different domains gathered to treat this subject. It contains two distinct parts; the first combines theory and simulations methods with specific examples, while the second part discusses methods to fabricate nanomaterials with crystalline and amorphous phases and experimental techniques to measure the thermal conductivity of such materials. Physical insights are given in the first part of the book, related with the existing theoretical models and the state of art simulations methods (molecular dynamics, ab-initio simulations, kinetic theory of gases). In the second part, engineering advances in the nanofabrication of crystalline/amorphous heterostructures (heavy ion irradiation, electrochemical etching, aging/recrystallization, ball milling, PVD, laser crystallization and magnetron sputtering) and adequate experimental measurement methods are analyzed (Scanning Thermal Microscopy, Raman, thermal wave methods and x-rays neutrons spectroscopy).

Book Nanoscale Thermoelectric Materials  Thermal and Electrical Transport  and Applications to Solid State Cooling and Power Generation  Volume 1543

Download or read book Nanoscale Thermoelectric Materials Thermal and Electrical Transport and Applications to Solid State Cooling and Power Generation Volume 1543 written by Scott P. Beckman and published by Cambridge University Press. This book was released on 2013-12-09 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: At the Material Research Society Spring 2013 meeting, held in San Francisco April 1-5, 2013, three symposia were held that focused on thermal-to-electric energy conversion and thermal transport: Symposium H: Nanoscale Thermoelectrics-Materials and Transport Phenomena - II, Symposium I: Materials for Solid-State Refrigeration, and Symposium V: Nanoscale Heat Transport-From Fundamentals to Devices. Although each technical session was focused on a different aspect of this subject, the intellectual commensurability of these symposia warranted the publication of their proceedings in a single volume.

Book Experimental and Theoretical Investigation of Thermal and Thermoelectric Transport in Nanostructures

Download or read book Experimental and Theoretical Investigation of Thermal and Thermoelectric Transport in Nanostructures written by Arden Lot Moore and published by . This book was released on 2010 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work presents the development and application of analytical, numerical, and experimental methods for the study of thermal and electrical transport in nanoscale systems, with special emphasis on those materials and phenomena which can be important in thermoelectric and semiconductor device applications. Analytical solutions to the Boltzmann transport equation (BTE) using the relaxation time approximation (RTA) are presented and used to study the thermal and electrical transport properties of indium antimonide (InSb), indium arsenide (InAs), bismuth telluride (Bi2Te3), and chromium disilicide (CrSi2) nanowires. Experimental results for the thermal conductivity of single layer graphene supported by SiO2 were analyzed using an RTA-based model and compared to a full quantum mechanical numerical BTE solution which does not rely on the RTA. The ability of these models to explain the measurement results as well as differences between the two approaches are discussed. Alternatively, numerical solutions to the BTE may be obtained statistically through Monte Carlo simulation for complex geometries which may prove intractable for analytical methods. Following this approach, phonon transport in silicon (Si) sawtooth nanowires was studied, revealing that thermal conductivity suppression below the diffuse surface limit is possible. The experimental investigation of energy transport in nanostructures typically involved the use of microfabricated devices or non-contact optical methods. In this work, two such approaches were analyzed to ascertain their thermal behavior and overall accuracy as well as areas for possible improvement. A Raman spectroscopy-based measurement design for investigating the thermal properties of suspended and supported graphene was examined analytically. The resulting analysis provided a means of determining from measurement results the thermal interface conductance, thermal contact resistance, and thermal conductivity of the suspended and supported graphene regions. Previously, microfabricated devices of several different designs have been used to experimentally measure the thermal transport characteristics of nanostructures such as carbon nanotubes, nanowires, and thin films. To ascertain the accuracy and limitations of various microdevice designs and their associated conduction analyses, finite element models were constructed using ANSYS and measurements of samples of known thermal conductance were simulated. It was found that designs with the sample suspended were generally more accurate than those for which the sample is supported on a bridge whose conductance is measured separately. The effects of radiation loss to the environment of certain device designs were also studied, demonstrating the need for radiation shielding to be at temperatures close to that of the device substrate in order to accurately calibrate the resistance thermometers. Using a suspended microdevice like those analyzed using finite element analysis, the thermal conductivities of individual bismuth (Bi) nanowires were measured. The results were correlated with the crystal structure and growth direction obtained by transmission electron microscopy on the same nanowires. Compared to bulk Bi in the same crystal direction, the thermal conductivity of a single-crystal Bi nanowires of 232 nm diameter was found to be 3 - 6 times smaller than bulk between 100 K and 300 K. For polycrystalline Bi nanowires of 74 nm to 255 nm diameter the thermal conductivity was reduced by a factor of 18 - 78 over the same temperature range. Comparable thermal conductivity values were measured for polycrystalline nanowires of varying diameters, suggesting a grain boundary scattering mean free path for all heat carriers in the range of 15 - 40 nm which is smaller than the nanowire diameters. An RTA-based transport model for both charge carriers and phonons was developed which explains the thermal conductivity suppression in the single-crystal nanowire by considering diffuse phonon-surface scattering, partially diffuse surface scattering of electrons and holes, and scattering of phonons and charge carriers by ionized impurities such as oxygen and carbon of a concentration on the order of 1019 cm−3. Using a similar experimental setup, the thermoelectric properties (Seebeck coefficient, electrical conductivity, and thermal conductivity) of higher manganese silicide (HMS) nanostructures were investigated. Bulk HMS is a passable high temperature thermoelectric material which possesses a complex crystal structure that could lead to very interesting and useful nanoscale transport properties. The thermal conductivities of HMS nanowires and nanoribbons were found to be reduced by 50 - 60 % compared to bulk values in the same crystal direction for both nanoribbons and nanowires. The measured Seebeck coefficient data was comparable or below that of bulk, suggesting unintentional doping of the samples either during growth or sample preparation. Difficulty in determining the amorphous oxide layer thickness for nanoribbons samples necessitated using the total, oxide-included cross section in the thermal and electrical conductivity calculation. This in turn led to the determined electrical conductivity values representing the lower bound on the actual electrical conductivity of the HMS core. From this approach, the measured electrical conductivity values were comparable or slightly below the lower end of bulk electrical conductivity values. This oxide thickness issue affects the determination of the HMS nanostructure thermoelectric figure of merit ZT as well, though the lower bound values obtained here were found to still be comparable to or slightly smaller than the expected bulk values in the same crystal direction. Analytical modeling also indicates higher doping than in bulk. Overall, HMS nanostructures appear to have the potential to demonstrate measurable size-induced ZT enhancement, especially if optimal doping and control over the crystallographic growth direction can be achieved. However, experimental methods to achieve reliable electrical contact to quality four-probe samples needs to be improved in order to fully investigate the thermoelectric potential of HMS nanostructures.

Book The Physics of Phonons

    Book Details:
  • Author : Gyaneshwar P. Srivastava
  • Publisher : Routledge
  • Release : 2019-07-16
  • ISBN : 1351409557
  • Pages : 438 pages

Download or read book The Physics of Phonons written by Gyaneshwar P. Srivastava and published by Routledge. This book was released on 2019-07-16 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: There have been few books devoted to the study of phonons, a major area of condensed matter physics. The Physics of Phonons is a comprehensive theoretical discussion of the most important topics, including some topics not previously presented in book form. Although primarily theoretical in approach, the author refers to experimental results wherever possible, ensuring an ideal book for both experimental and theoretical researchers. The author begins with an introduction to crystal symmetry and continues with a discussion of lattice dynamics in the harmonic approximation, including the traditional phenomenological approach and the more recent ab initio approach, detailed for the first time in this book. A discussion of anharmonicity is followed by the theory of lattice thermal conductivity, presented at a level far beyond that available in any other book. The chapter on phonon interactions is likewise more comprehensive than any similar discussion elsewhere. The sections on phonons in superlattices, impure and mixed crystals, quasicrystals, phonon spectroscopy, Kapitza resistance, and quantum evaporation also contain material appearing in book form for the first time. The book is complemented by numerous diagrams that aid understanding and is comprehensively referenced for further study. With its unprecedented wide coverage of the field, The Physics of Phonons will be indispensable to all postgraduates, advanced undergraduates, and researchers working on condensed matter physics.

Book Experimental Investigations of Energy Carrier Interactions with Atomic Disorders and Artificial Long range Orders

Download or read book Experimental Investigations of Energy Carrier Interactions with Atomic Disorders and Artificial Long range Orders written by Brandon Paul Smith and published by . This book was released on 2020 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of nanoscale energy transport, conversion, and storage is at an exciting time with next-generation devices manipulating discrete energy carriers, e.g. phonons, photons, and electrons, in confined dimensions arriving closer to commercialization, such as solid-state flexible electronics and optoelectronics utilizing one dimension (1D) and two dimensional (2D) nanomaterials. The transport dynamics of quasiparticles and their coupling are modified, notably in low dimensional nanomaterials, with the inclusion of disorder and artificial long-range order. Through this lens, it is possible to probe interesting physics and draw out intrinsic properties of the nanomaterials. This is especially important for electronic systems and energy conversion & storage devices where heat generation and dissipation within nano- and microscale locations of nonequilibrium impedes continued advancement. This thesis examines outstanding questions concerning nanoscale thermal and thermoelectric transport in low-dimensional materials to further understanding of crystal disorder and artificial long-range order. Specifically, the material systems investigated are alloy disorder and surface roughness in semiconducting silicon germanium (SiGe) nanowires, microscale rippling in layered molybdenum disulfide (MoS2) flakes, intra- and interlayer interactions in bulk and monolayer MoS2, and artificially created, long-range domain walls in twisted bilayer graphene (TBG). The fundamental questions are addressed through electrothermal, optothermal, and scanning probe metrology techniques. First, eight-probe thermal conductivity measurements of SiGe nanowires show that alloying suppresses thermal transport, and the mean-free-paths of low-frequency phonons are suppressed by diffuse surface roughness scattering in nanowires. The diffuse surface scattering results in length-independent thermal conductivity for lengths over two micrometers. Similarly, four-probe thermal conductivity measurements reveal that microscale ripples have negligible effects on phonon transport in 2D layers as the ripple wavelengths and curvatures are much larger than the phonon mean free paths and wavelengths. The peak thermal conductivity is found to increase with decreasing Raman scattering intensity in the frequency range with vanishing phonon density of states in MoS2 indicating an important role of point defect scattering. In addition, this dissertation presents an experimental effort to employ micro-Raman spectroscopy to investigate local nonequilibrium among different phonon polarizations in MoS2 inside the focused laser spot. It also describes an exploration of ultra-high vacuum scanning probe microscopy for probing the local thermoelectric property of twisted bilayer graphene moiré superstructures

Book Electron and Phonon Transport in Disordered Thermoelectric Materials

Download or read book Electron and Phonon Transport in Disordered Thermoelectric Materials written by Simon Thébaud and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past decades, the increasingly pressing need for clean energy sources and the realization that a huge proportion of the world energy consumption is wasted in heat have prompted great interest in developing efficient thermoelectric generation modules. These devices could harvest waste heat from industrial processes or other sources, turning a temperature gradient into a voltage through the Seebeck effect. Efficient thermoelectric materials should exhibit a low thermal conductivity, a high electrical conductivity and a high Seebeck coefficient. Simultaneously optimizing these parameters is a great challenge of condensed matter physics and materials science. With a view to enhance the thermoelectric properties of several promising materials, we explore several strategies in which defects (atomic substitutions, vacancies...), disorder and dimensional confinement play a crucial role. We perform density functional theory calculations and projections on Wannier orbitals to construct realistic Hamiltonians and dynamical matrices describing their electronic and vibrational structure in real space. These parameters are then used to compute the thermoelectric transport properties using the Kubo formalism, the Boltzmann transport equation, the Landauer formalism, and the Chebyshev polynomial Green's function method that allows for an exact treatment of disorder. We investigate the electronic transport properties and thermoelectric performances of two promising materials for high-temperature power generation, strontium titanate and rutile titanium dioxide. Comparison of our predictions with a wealth of experimental data yields a very good agreement. We show that the increase of the Seebeck coefficient observed in strontium titanate superlayers, until now attributed to quantum confinement effects, is in fact well explained assuming delocalized electrons. The general effects of resonant states on electronic transport are explored in a model study, showing a sixfold increase of the thermoelectric performances. The particular case of strontium titanate is then examined, and localization effects are shown to destroy the performances if Vanadium atoms are introduced as resonant impurities. The influence of defects in two-dimensional materials is investigated. Contrary to adatoms, substitutions in transition metal dichalcogenides are shown to localize the charge carriers. We study the effect of vacancies on phonon transport in graphene, and determine the phonon-vacancy scattering rate. Comparison with thermal conductivity data for irradiated and finite-size graphene samples yields a very good agreement between theory and experiments.

Book Materials  Preparation  and Characterization in Thermoelectrics

Download or read book Materials Preparation and Characterization in Thermoelectrics written by David Michael Rowe and published by CRC Press. This book was released on 2012-04-25 with total page 555 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes updated theoretical considerations which provide an insight into avenues of research most likely to result in further improvements in material performance. It details the latest techniques for the preparation of thermoelectric materials employed in energy harvesting, together with advances in the thermoelectric characterisation of nanoscale material. The book reviews the use of neutron beams to investigate phonons, whose behaviour govern the lattice thermal conductivity and includes a chapter on patents.

Book Oxide Thermoelectric Materials

Download or read book Oxide Thermoelectric Materials written by Yuan-Hua Lin and published by John Wiley & Sons. This book was released on 2019-10-28 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first book of its kind?providing comprehensive information on oxide thermoelectrics This timely book explores the latest research results on the physics and materials science of oxide thermoelectrics at all scales. It covers the theory, design and properties of thermoelectric materials as well as fabrication technologies for devices and their applications. Written by three distinguished materials scientists, Oxide Thermoelectric Materials reviews: the fundamentals of electron and phonon transport; modeling of thermoelectric modules and their optimization; synthetic processes, structures, and properties of thermoelectric materials such as Bi2Te3- and skutterudite-based materials and Si-Ge alloys. In addition, the book provides a detailed description of the construction of thermoelectric devices and their applications. -Contains fundamentals and applications of thermoelectric materials and devices, and discusses their near-future perspectives -Introduces new, promising materials and technologies, such as nanostructured materials, perovskites, and composites -Paves the way for increased conversion efficiencies of oxides -Authored by well-known experts in the field of thermoelectrics Oxide Thermoelectric Materials is a well-organized guidebook for graduate students involved in physics, chemistry, or materials science. It is also helpful for researchers who are getting involved in thermoelectric research and development.

Book New Materials for Thermoelectric Applications  Theory and Experiment

Download or read book New Materials for Thermoelectric Applications Theory and Experiment written by Veljko Zlatic and published by Springer. This book was released on 2012-10-17 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermoelectric devices could play an important role in making efficient use of our energy resources but their efficiency would need to be increased for their wide scale application. There is a multidisciplinary search for materials with an enhanced thermoelectric responses for use in such devices. This volume covers the latest ideas and developments in this research field, covering topics ranging from the fabrication and characterization of new materials, particularly those with strong electron correlation, use of nanostructured, layered materials and composites, through to theoretical work to gain a deeper understanding of thermoelectric behavior. It should be a useful guide and stimulus to all working in this very topical field.

Book Nanoscale Electron  Phonon and Spin Transport in Thermoelectric Materials

Download or read book Nanoscale Electron Phonon and Spin Transport in Thermoelectric Materials written by Bolin Liao (Ph. D.) and published by . This book was released on 2016 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: Climate change is among the most critical challenges that are facing the human race in the 21st century. One of the major factors that leads to climate change is the increasing consumption of fossil fuels, driven by industrialization and economic growth at an unprecedented pace. For a secure and sustainable future of energy and the environment, new clean and efficient energy technologies are in urgent need. Thermoelectric materials are a group of materials that can directly convert heat into electricity. Being solid state, clean, reliable and without moving parts, thermoelectric energy conversion holds great promise as a candidate technology to harvest energy from thermal sources, such as the sun and terrestrial heat sources, as well as improve the efficiency of existing energy systems by recycling the inevitable waste heat. The bottleneck that prevents large-scale deployment of thermoelectric modules so far, however, is the relatively low efficiency and high cost. A good thermoelectric material needs to conduct electricity well and conduct heat poorly to attain high efficiency. Remarkable progress has been made in the past decade to decouple the charge and heat transport and thus improve the material performance. Most of the progress has been based on a more detailed understanding of the transport and interaction of fundamental energy carriers, such as electrons and phonons in most semiconductors, and magnons in magnetic materials. These understandings have been achieved through the development of both first-principles simulations and experimental spectroscopic tools, in particular for phonon transport and phonon-phonon interaction, which have enabled calculations and measurements at the single-phonon-mode level. Information gained from these studies formed the foundation of the successful engineering efforts of designing nanostructured thermoelectric materials. Although the nanostructuring approach has been able to reduce the thermal conductivity of thermoelectric materials down to proximity of the amorphous limit, it has been realized by the community that further improvement of thermoelectric materials requires breakthroughs in boosting the electrical transport properties, including the electrical conductivity and the Seebeck coefficient. Despite several existing strategies, a prerequisite for systematic improvement is, again, insight into the transport and interaction of fundamental carriers, particularly involving electrons, at the single-mode level. This insight has largely remained lacking in terms of electrons, both on the simulation side and on the experimental side. This thesis aims to develop both simulation and experimental tools to study nanoscale electron, phonon and magnon transport and their interactions, with a particular emphasis on understanding the electron-phonon interaction at the single-mode level. This is among the most important forms of carrier interactions and determines the intrinsic electron transport properties of most conductors. Regarding phonon transport, we applied first-principles lattice dynamics to study phonon-phonon interaction and lattice thermal conductivity in a strongly-correlated thermoelectric compound FeSb 2. On electronphonon interactions, we studied from first-principles the intrinsic electrical transport properties of phosphorene, which are limited by electron-phonon interactions, analyzed its anisotropy and evaluated its potential as a thermoelectric material; we studied how free carriers can in turn scatter phonons through the electron-phonon interaction and reduce the lattice thermal conductivity; to verify this finding, we designed an ultrafast photoacoustic spectroscopic technique to directly detect the damping of a single phonon mode due to electron-phonon interaction. On phonon-magnon interactions, we applied the coupled Boltzmann equation to analyze coupled phonon-magnon diffusion and proposed a novel magnon cooling effect. These fundamental discoveries can potentially lead to new design principles for more efficient thermoelectric materials in the future.

Book Advanced Thermoelectrics

Download or read book Advanced Thermoelectrics written by Zhifeng Ren and published by CRC Press. This book was released on 2017-11-06 with total page 1102 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview on nanostructured thermoelectric materials and devices, covering fundamental concepts, synthesis techniques, device contacts and stability, and potential applications, especially in waste heat recovery and solar energy conversion. The contents focus on thermoelectric devices made from nanomaterials with high thermoelectric efficiency for use in large scale to generate megawatts electricity. Covers the latest discoveries, methods, technologies in materials, contacts, modules, and systems for thermoelectricity. Addresses practical details of how to improve the efficiency and power output of a generator by optimizing contacts and electrical conductivity. Gives tips on how to realize a realistic and usable device or module with attention to large scale industry synthesis and product development. Prof. Zhifeng Ren is M. D. Anderson Professor in the Department of Physics and the Texas Center for Superconductivity at the University of Houston. Prof. Yucheng Lan is an associate professor in Morgan State University. Prof. Qinyong Zhang is a professor in the Center for Advanced Materials and Energy at Xihua University of China.

Book Thermoelectrics

Download or read book Thermoelectrics written by N. M. Ravindra and published by Springer. This book was released on 2018-08-29 with total page 131 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a concise but comprehensive introduction to the fundamentals and current state of the art in thermoelectrics. Addressing an audience of materials scientists and engineers, the book covers theory, materials selection, and applications, with a wide variety of case studies reflecting the most up-to-date research approaches from the past decade, from single crystal to polycrystalline form and from bulk to thin films to nano dimensions. The world is facing major challenges for finding alternate energy sources that can satisfy the increasing demand for energy consumption while preserving the environment. The field of thermoelectrics has long been recognized as a potential and ideal source of clean energy. However, the relatively low conversion efficiency of thermoelectric devices has prevented their utility on a large scale. While addressing the need for thermal management in materials, device components, and systems, thermoelectrics provides a fundamental solution to waste heat recovery and temperature control. This book summarizes the global efforts that have been made to enhance the figure of merit of various thermoelectric materials by choosing appropriate processes and their influence on properties and performance. Because of these advances, today, thermoelectric devices are found in mainstream applications such as automobiles and power generators, as opposed to just a few years ago when they could only be used in niche applications such as in aeronautics, infrared imaging, and space. However, the continued gap between fundamental theoretical results and actual experimental data of figure of merit and performance continues to challenge the commercial applications of thermoelectrics. This book presents both recent achievements and continuing challenges, and represents essential reading for researchers working in this area in universities, industry, and national labs.