EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Nanoscale Phenomena in Ultrathin Catalyst Layers of PEM Fuel Cells

Download or read book Nanoscale Phenomena in Ultrathin Catalyst Layers of PEM Fuel Cells written by Amin Nouri Khorasani and published by . This book was released on 2013 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ionomer-free ultrathin catalyst layers have shown promise to enhance the performance and reduce the platinum loading of catalyst layers in polymer electrolyte fuel cell. The nanostructure of a catalyst layer affects the distribution and diffusion of reactants, and consequently its effectiveness factor. We employed classical molecular dynamics to simulate a catalyst layer pore as a water-filled channel with faceted walls, and investigated the effect of channel geometry and charging on hydronium ion and water distribution and diffusion in the channel. Equilibrium hydronium ion distribution profiles on the catalyst channel were obtained to calculate the effect of channel structure on the electrostatic effectiveness factor of the channel. Furthermore, we calculated the self-diffusion coefficient and interfacial water structure in the model channel. Results on proton concentration, diffusion and kinetics are discussed in view of catalyst layer performance.

Book PEM Fuel Cell Electrocatalysts and Catalyst Layers

Download or read book PEM Fuel Cell Electrocatalysts and Catalyst Layers written by Jiujun Zhang and published by Springer Science & Business Media. This book was released on 2008-08-26 with total page 1147 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proton exchange membrane (PEM) fuel cells are promising clean energy converting devices with high efficiency and low to zero emissions. Such power sources can be used in transportation, stationary, portable and micro power applications. The key components of these fuel cells are catalysts and catalyst layers. “PEM Fuel Cell Electrocatalysts and Catalyst Layers” provides a comprehensive, in-depth survey of the field, presented by internationally renowned fuel cell scientists. The opening chapters introduce the fundamentals of electrochemical theory and fuel cell catalysis. Later chapters investigate the synthesis, characterization, and activity validation of PEM fuel cell catalysts. Further chapters describe in detail the integration of the electrocatalyst/catalyst layers into the fuel cell, and their performance validation. Researchers and engineers in the fuel cell industry will find this book a valuable resource, as will students of electrochemical engineering and catalyst synthesis.

Book One dimensional Nanostructures for PEM Fuel Cell Applications

Download or read book One dimensional Nanostructures for PEM Fuel Cell Applications written by Shangfeng Du and published by Academic Press. This book was released on 2017-08-07 with total page 97 pages. Available in PDF, EPUB and Kindle. Book excerpt: One-dimensional Nanostructures for PEM Fuel Cell Applications provides a review of the progress made in 1D catalysts for applications in polymer electrolyte fuel cells. It highlights the improved understanding of catalytic mechanisms on 1D nanostructures and the new approaches developed for practical applications, also including a critical perspective on current research limits. The book serves as a reference for the design and development of a new generation of catalysts to assist in the realization of successful commercial use that have the potential to decarbonize the domestic heat and transport sectors. In addition, a further commercialization of this technology requires advanced catalysts to address major obstacles faced by the commonly used Pt/C nanoparticles. The unique structure of one-dimensional nanostructures give them advantages to overcome some drawbacks of Pt/C nanoparticles as a new type of excellent catalysts for fuel cell reactions. In recent years, great efforts have been devoted in this area, and much progress has been achieved. Provides a review of 1D catalysts for applications in polymer electrolyte fuel cells Presents an ideal reference for the design and development of a new generation of catalysts to assist in the realization of successful commercial use Highlights the progress made in recent years in this emerging field

Book Polymer Electrolyte Fuel Cells

Download or read book Polymer Electrolyte Fuel Cells written by Michael Eikerling and published by CRC Press. This book was released on 2014-09-23 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides a systematic and profound account of scientific challenges in fuel cell research. The introductory chapters bring readers up to date on the urgency and implications of the global energy challenge, the prospects of electrochemical energy conversion technologies, and the thermodynamic and electrochemical principles underlying the op

Book Modeling of Ultrathin Catalyst Layers in Polymer Electrolyte Fuel Cells

Download or read book Modeling of Ultrathin Catalyst Layers in Polymer Electrolyte Fuel Cells written by Karen Ka Wing Chan and published by . This book was released on 2013 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ultrathin catalyst layers (UTCLs) are emerging as a promising alternative to conventional catalyst layers in polymer electrolyte fuel cells. In comparison, UTCLs have dramatically reduced Pt loading and thicknesses and are ionomer-free. We explore two open questions in the theory of UTCLs (1) the proton transport mechanism within the ionomer-free layer and (2) water management in membrane electrode assemblies (MEAs) with UTCLs. To investigate (1), we present a UTCL model, which assumes the protons are drawn into the UTCL via their interaction with the metal surface charge. We consider a continuum model of a water-filled, cylindrical nanopore with charged walls. We derive the relation between metal potential and surface charge density from a Stern double layer model. The model suggests the proton concentration and reaction current density to be highly dependent on the charging properties of the metal-solution interface, which are parameterized primarily by the potential of zero charge. Therefore, materials for UTCLs should be selected not only for their intrinsic mass activities and durability, but also for their charging properties. A systematic evaluation of the interplay of electrostatic, kinetic, and mass transport phenomena in UTCL demanded an impedance variant of the model. Based on the general set of transient equations, we have derived analytical impedance expressions and equivalent circuit representations in 4 limiting cases. While the UTCL model suggests the charging of the metal-solution interface to be crucial to performance, theoretical studies on the charging behaviour of platinum are limited. We present a generalised computational hydrogen electrode that enables the ab initio simulation of metal-solution interfaces as a function of pH and potential. To address (2), we present a water balance model to MEAs with UTCLs. The model relates the current densities, capillary pressure distributions, and fluxes of vapor and liquid water. Analysis of the model suggests that UTCLs require efficient liquid transport paths out of the MEA at low and moderate temperature. We discuss strategies for increasing the current density for the onset of GDL flooding, via enhanced liquid permeabilities, vaporization areas, and gas pressure differentials.

Book Fuel Cell Science

Download or read book Fuel Cell Science written by Andrzej Wieckowski and published by John Wiley & Sons. This book was released on 2011-02-14 with total page 652 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive survey of theoretical andexperimental concepts in fuel cell chemistry Fuel cell science is undergoing significant development, thanks, in part, to a spectacular evolution of the electrocatalysis concepts, and both new theoretical and experimental methods. Responding to the need for a definitive guide to the field, Fuel Cell Science provides an up-to-date, comprehensive compendium of both theoretical and experimental aspects of the field. Designed to inspire scientists to think about the future of fuel cell technology, Fuel Cell Science addresses the emerging field of bio-electrocatalysis and the theory of heterogeneous reactions in fuel cell science and proposes potential applications for electrochemical energy production. The book is thorough in its coverage of the electron transfer process and structure of the electric double layer, as well as the development of operando measurements. Among other subjects, chapters describe: Recently developed strategies for the design, preparation, and characterization of catalytic materials for fuel cell electrodes, especially for new fuel cell cathodes A wide spectrum of theoretical and computational methods, with?the aim of?developing?new fuel cell catalysis concepts and improving existing designs to increase their performance.? Edited by two leading faculty, the book: Addresses the emerging fields of bio-electrocatalysis for fuel cells and theory of heterogeneous reactions for use in fuel cell catalysis Provides a survey of experimental and theoretical concepts in these new fields Shows the evolution of electrocatalysis concepts Describes the chemical physics of fuel cell reactions Forecasts future developments in electrochemical energy production and conversion Written for electrochemists and electrochemistry graduate students, electrocatalysis researchers, surface and physical chemists, chemical engineers, automotive engineers, and fuel cell and energy-related researchers, this modern compendium can help today's best minds meet the challenges in fuel science technology.

Book Pore scale Simulation of Cathode Catalyst Layers in Proton Exchange Membrane Fuel Cells  PEMFCs

Download or read book Pore scale Simulation of Cathode Catalyst Layers in Proton Exchange Membrane Fuel Cells PEMFCs written by Weibo Zheng (Ph. D. in mechanical engineering) and published by . This book was released on 2019 with total page 149 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding the complex phenomena occurring inside the catalyst layer of a proton exchange membrane fuel cell (PEMFC) is critical to design of an optimized structure with low platinum loading and high performance. Describing detailed physical and chemical processes in the catalyst layer at the resolution of pore scale, pore-scale simulation is considered as a promising approach for use in understanding the structure-performance relation and subsequent optimization of the catalyst layer. For wide spread use in industry, the computational cost of pore-scale simulation needs to be reduced. To achieve this goal, a multiscale decomposition method that accelerates the convergence of an iteratively-solved variable distribution in porous electrodes is proposed. The multiscale method combines the macroscopic method with pore-scale simulation by decomposing a variable distribution into the macroscopic component and local fluctuations. The decomposition removes the slowly converged, long wavelength components in an iteratively-solved variable distribution, thereby accelerating the convergence. In this research, to reduce the computational cost of multiphase pore-scale simulation, the multiscale method is applied to the electrolyte phase potential and oxygen concentration, both of which converge slowly and limit the overall computational efficiency. The results show that the multiscale method can substantially accelerate the convergence without sacrificing the accuracy. It is also found that the estimation of the effective transport property appearing in the volume-averaged part of the multiscale method influences the convergence rate of the multiscale method. With more accurate estimation of an effective transport property, the multiscale method is shown to work more effectively, especially for a thick porous electrode. Being an important parameter in the application to oxygen concentration, the effective oxygen diffusivity in pores is systematically investigated using pore-scale simulation, and empirical correlations for use in the multiscale method, as well as other macroscopic simulation methods, are obtained. The emphasis is placed on the importance of Knudsen diffusion in nanoscale pores in the catalyst layer. The results also highlight the importance of liquid water distribution on the effective diffusivity estimation and, therefore, on the computational efficiency of the multiscale method. With reduced computational cost, multiphase pore-scale simulation of a catalyst layer used in a laboratory experiment is successfully performed. The proposed multiscale decomposition method can be extended to pore-scale simulation for any porous electrodes.

Book Micro   Nano Engineering of Fuel Cells

Download or read book Micro Nano Engineering of Fuel Cells written by Dennis Y.C. Leung and published by CRC Press. This book was released on 2015-04-24 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fuel cells are clean and efficient energy conversion devices expected to be the next generation power source. During more than 17 decades of research and development, various types of fuel cells have been developed with a view to meet the different energy demands and application requirements. Scientists have devoted a great deal of time and effort

Book Nanostructured and Advanced Materials for Fuel Cells

Download or read book Nanostructured and Advanced Materials for Fuel Cells written by San Ping Jiang and published by CRC Press. This book was released on 2013-12-07 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: Boasting chapters written by leading international experts, Nanostructured and Advanced Materials for Fuel Cells provides an overview of the progress that has been made so far in the material and catalyst development for fuel cells. The book covers the most recent developments detailing all aspects of synthesis, characterization, and performance.It

Book Computational Prediction of Nanoscale Transport Characteristics and Catalyst Utilization in Fuel Cell Catalyst Layers by the Lattice Boltzmann Method

Download or read book Computational Prediction of Nanoscale Transport Characteristics and Catalyst Utilization in Fuel Cell Catalyst Layers by the Lattice Boltzmann Method written by and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: In the present study, a three-dimensional lattice Boltzmann model based on the quasi-random nanostructural model is proposed to evaluate the mass transport properties and catalyst utilization of fuel cell catalyst layers in pursuance of catalyst performance improvement. A series of catalyst layers is randomly generated with statistical significance at the 95% confidence level to reflect the heterogeneity of the catalyst layer nanostructures. The nanoscale gas transport phenomena inside the catalyst layers are simulated by the D3Q19 ( i.e., three-dimensional, 19 velocities) lattice Boltzmann method, and the corresponding mass transport characteristics are mathematically modeled in terms of structural properties. Considering the nanoscale reactant transport phenomena, a transport-based effective catalyst utilization factor is defined and statistically analyzed to determine the structure-transport influence on catalyst utilization. The tortuosity estimation results clearly show that the classic Bruggeman equation underestimates the tortuosity of the catalyst layers and should be modified for PEFC applications. Subsequently, the effective mass diffusion coefficient is calculated by applying the tortuosity factors to the Knudsen diffusion coefficient in the catalyst layers, and it shows good agreement with published experimental data. These results indicate that Knudsen diffusion is the dominant mass transfer mechanism for fuel cell catalyst layers and that the pre-estimated tortuosity accurately reflects the mass transfer phenomena in the catalyst layers. Furthermore, catalyst utilization can be affected by excessive Pt/C catalyst loading due to the lack of pore interconnections, and it is significantly limited by the substantive reactant mass transport path inside the fuel cell catalyst layers. Graphical abstract: Highlights: A 3-dimensional Lattice Boltzmann method (LBM) was proposed for catalyst modeling. Mass transfer phenomena inside the catalyst layers were simulated by the LBM model. Morphological influences on gas transport and catalyst utilization were analyzed. The nano transport catalyst utilization was lower than the theoretical maximum. Catalyst utilization was strongly affected by the limited gas transport phenomena.

Book Transport Phenomena in Cathode Catalyst Layer of PEM Fuel Cells

Download or read book Transport Phenomena in Cathode Catalyst Layer of PEM Fuel Cells written by Prodip K. Das and published by . This book was released on 2010 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Polymer electrolyte membrane (PEM) fuel cells have increasingly become promising green energy sources for automobile and stationary cogeneration applications but its success in commercialization depends on performance optimization and manufacturing cost. The activation losses, expensive platinum catalyst, and water flooding phenomenon are the key factors currently hindering commercialization of PEM fuel cells. These factors are associated with the cathode catalyst layer (CCL), which is about ten micrometers thick. Given the small scale of this layer, it is extremely difficult to study transport phenomena inside the catalyst layer experimentally, either intrusively or non-intrusively. Therefore, mathematical and numerical models become the only means to provide insight on the physical phenomena occurring inside the CCL and to optimize the CCL designs before building a prototype for engineering application. In this thesis research, a comprehensive two-phase mathematical model for the CCL has been derived from the fundamental conservation equations using a volume-averaging method. The model also considers several water transport and physical processes that are involved in the CCL. The processes are: (a) electro-osmotic transport from the membrane to the CCL, (b) back-diffusion of water from the CCL to the membrane, (c) condensation and evaporation of water, and (d) removal of liquid water to the gas flow channel through the gas diffusion layer (GDL). A simple analytical model for the activation overpotential in the CCL has also been developed and an optimization study has been carried out using the analytical activation overpotential formulation. Further, the mathematical model has been simplified for the CCL and an analytical approach has been provided for the liquid water transport in the catalyst layer.

Book Nanomaterials for Fuel Cell Catalysis

Download or read book Nanomaterials for Fuel Cell Catalysis written by Kenneth I. Ozoemena and published by Springer. This book was released on 2016-07-05 with total page 583 pages. Available in PDF, EPUB and Kindle. Book excerpt: Global experts provide an authoritative source of information on the use of electrochemical fuel cells, and in particular discuss the use of nanomaterials to enhance the performance of existing energy systems. The book covers the state of the art in the design, preparation, and engineering of nanoscale functional materials as effective catalysts for fuel cell chemistry, highlights recent progress in electrocatalysis at both fuel cell anode and cathode, and details perspectives and challenges in future research.

Book PEM Fuel Cell Electrocatalysts and Catalyst Layers

Download or read book PEM Fuel Cell Electrocatalysts and Catalyst Layers written by Jiujun Zhang and published by Springer. This book was released on 2010-12-14 with total page 1137 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proton exchange membrane (PEM) fuel cells are promising clean energy converting devices with high efficiency and low to zero emissions. Such power sources can be used in transportation, stationary, portable and micro power applications. The key components of these fuel cells are catalysts and catalyst layers. “PEM Fuel Cell Electrocatalysts and Catalyst Layers” provides a comprehensive, in-depth survey of the field, presented by internationally renowned fuel cell scientists. The opening chapters introduce the fundamentals of electrochemical theory and fuel cell catalysis. Later chapters investigate the synthesis, characterization, and activity validation of PEM fuel cell catalysts. Further chapters describe in detail the integration of the electrocatalyst/catalyst layers into the fuel cell, and their performance validation. Researchers and engineers in the fuel cell industry will find this book a valuable resource, as will students of electrochemical engineering and catalyst synthesis.

Book Thin Film Catalysts for Proton Exchange Membrane Water Electrolyzers and Unitized Regenerative Fuel Cells

Download or read book Thin Film Catalysts for Proton Exchange Membrane Water Electrolyzers and Unitized Regenerative Fuel Cells written by Peter Kúš and published by Springer. This book was released on 2020-08-14 with total page 101 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work revolves around the hydrogen economy and energy-storage electrochemical systems. More specifically, it investigates the possibility of using magnetron sputtering for deposition of efficient thin-film anode catalysts with low noble metal content for proton exchange membrane water electrolyzers (PEM-WEs) and unitized regenerative fuel cells (PEM-URFCs). The motivation for this research derives from the urgent need to minimize the price of such electrochemical devices should they enter the mass production. Numerous experiments were carried out, correlating the actual in-cell performance with the varying position of thin-film catalyst within the membrane electrode assembly, with the composition of high-surface support sublayer and with the chemical structure of the catalyst itself. The wide arsenal of analytical methods ranging from electrochemical impedance spectroscopy through electrochemical atomic force microscopy to photoelectron spectroscopy allowed the description of the complex phenomena behind different obtained efficiencies. Systematic optimizations led to the design of a novel PEM-WE anode thin-film iridium catalyst which performs similarly to the standard counterparts despite using just a fraction of their noble metal content. Moreover, the layer-by-layer approach resulted in the design of a Ir/TiC/Pt bi-functional anode for PEM-URFC which is able to operate in both the fuel cell and electrolyzer regime and thus helps to cut the cost of the whole conversion system even further.

Book Proton Conductivity of Graphene based Nafion   Catalyst Layer for Polymer Electrolyte Membrane Fuel Cell

Download or read book Proton Conductivity of Graphene based Nafion Catalyst Layer for Polymer Electrolyte Membrane Fuel Cell written by Aamer Khan and published by . This book was released on 2015 with total page 35 pages. Available in PDF, EPUB and Kindle. Book excerpt: Polymer Electrolyte Membrane Fuel Cells (PEMFCs) are the most assuring alternative power sources for a clean energy/environmental future, however, performance needs to be improved for large-scale commercialization. One of major current technical challenges is limited proton conductivity in catalyst layers. Recent emerging material, i.e., graphene, has a great potential to improve key transport properties including proton conductivity throughout the unique two dimensional structure, large effective surface area, and anticipated enhanced surface transport phenomena. Graphene, carbon black (CB) and carbon nano tubes (CNT) are used as additives in the catalyst layer in order to improve and compare the proton conductivity. The additives were implemented to the Nafion® solution variable wt. %, which were sprayed over Nafion® membrane as test samples. For the proton conductivity measurement, the test samples were sandwiched between the two electrodes maintaining a uniform pressure to ensure the uniform mechanical/electrical contact between the electrodes and samples. This cell assembly was tested using a potentiometer, and the obtained impedance was analyzed through the Nyquist plot at specified conditions of current voltage range. The experimental results show that the proton conductivity enhancement increases with the increasing graphene content. The enhancement is also compared to those of CB- and CNT-based membrane, showing that graphene-based Nafion® membrane provides higher proton conductivity than the CB-based Nafion® membrane. This may be related to the unique graphene structures, and the further studies will be needed to articulate the role of the graphene on the proton conductivity. The results thus obtained, provide an insight into finding an optimal material for improving the proton transport of PEM aiming at the optimal catalyst layer material design.

Book Catalyst Layers in Polymer Electrolyte Membrane Fuel Cells

Download or read book Catalyst Layers in Polymer Electrolyte Membrane Fuel Cells written by Jian Zhao and published by . This book was released on 2019 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: The structure of the catalyst layers (CLs) has a decisive impact on the performance, durability, and cost of polymer electrolyte membrane (PEM) fuel cells - these are the main technical challenges to the commercialization of PEM fuel cells. The porous CL conventionally consists of carbon-based platinum (Pt/C) and ionomer (Nafion polymer). An ideal CL should maintain the desired structure with sufficient gas diffusion and water removal channels (pores), proton transport media (ionomer), electron travel pathways (catalyst particles), and optimal three-phase boundaries (TPBs) where electrochemical reaction occurs (reaction sites). Practically, the CL is formed during the fabrication process which determines the physical structures, often represented by porosity, mean pore size, pore size distribution (PSD) and specific surface area. The physical structures, in turn, determine the effective transport properties such as effective mass diffusion coefficient and permeability for the reactant in the CLs. However, there is still no clear understanding of what is the optimal structure for the CLs. To investigate the structure of CLs, three aspects are studied in the present thesis work: (i) the effect of fabrication process on the resulting structure, (ii) the effect of the CL structure on its macro-properties, and (iii) the effect of the structure and macro-properties on the mass transport phenomena and the associated cell performance. Many factors including fabrication techniques and CL compositions have a significant impact on the structure formation of CLs. However, how these factors affect the structure is still unclear. Additionally, there lacks experimental characterization of the structure such as porosity, PSD, specific surface area, mean pore size, and surface fractal dimension, as well as mass transport properties such as effective diffusion coefficient and gas permeability for the CLs in literature. With the experimentally determined structural and mass transport parameters of the CLs and the associated electrodes, the mass transport phenomena in PEM fuel cells can be quantitatively analyzed. In the present thesis work, the CL pore structure is experimentally characterized by the method of standard porosimetry (MSP), which is established based on the phenomenon of capillary equilibrium in the wetted porous materials. By the means of MSP, a comprehensive characterization of the structure in terms of porosity, PSD, specific surface area, mean pore size, and surface fractal dimension is obtained. In addition, the effective diffusion coefficient of the CL is studied by the modified Loschmidt Cell, built based on the Fick's law of diffusion. The parameters including effective diffusion coefficient, diffusion resistivity, and its relation with the porosity and mean pore size is investigated. Further, the permeability is measured based on Darcy's law via a custom-engineered apparatus developed in my thesis work. The effect of Pt loading, temperature, flow rate, and gas species is explored in this thesis study. With the experimentally determined pore structure characterization and mass transport properties, a numerical study is performed for the better understanding of the mass transport mechanisms in the porous electrodes. The cell performance conducted in our lab is also reported in the present thesis for a better understanding of the ex-situ experiment and a comparison with the numerical modeling. The experimental and numerical studies presented in the present thesis work is of great significance to (i) understand the structure of the CLs, (ii) to understand the relation between the structure and the mass transport properties such as the effective diffusion coefficient and permeability, and (iii) to understand the effect of the structural parameters and mass transport properties on the mass transport phenomena and hence the cell performance in the PEM fuel cells.

Book Structure and Energetics of Nanoparticles and Ionomer Films in Fuel Cell Catalyst Layers

Download or read book Structure and Energetics of Nanoparticles and Ionomer Films in Fuel Cell Catalyst Layers written by Qianping He and published by . This book was released on 2013 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: Improving the durability and utilization efficiency of the platinum-on-carbon (Pt/C) catalyst is of vital importance to the commercialization of the polymer electrolyte membrane fuel cell (PEMFC). This body of work provides molecular level insights to aid the fulfillment of this goal. Chapter 1 describes the use of molecular dynamics (MD) simulation in an effort to understand the Pt/C degradation issue from the nano-adhesion point of view. The roles of catalyst nanoparticle size, shape, Pt/C surface oxidation and the extent of ionomer film hydration are investigated to study their effects on nano-particle adhesion. It is found that the adhesion force strengthens as the Pt size goes up. Nanoparticle of tetrahedral shape exhibits relatively stronger connection with the carbon. The hydroxylated surface enhances nano-adhesion and epoxidized surface diminishes the adhesion. The presence of ionomer film strengthens the adhesion. Chapter 2 uses MD simulations to investigate the microstructure of the catalyst layer, which is essential information needed for increasing the catalyst utilization rate. The ionomer film thickness, hydration level, surface oxidation of Pt/C, presence of Pt or PtO catalysts are key variables studied for their effects on the catalyst layer microstructure and transport properties. It is concluded that the oxidation of the carbon surface and the presence of Pt or PtO catalyst drastically influence the ionomer film configuration and the water distribution on the surface. The thickness of the ionomer film is directly related with its ability of retaining water. Chapter 3 describes experimental work exploring the effect of radiation damage on the microscopic characterization of the catalyst layer of the PEMFCs. It also provides information on the feasibility of in-situ nano-adhesion measurements inside the SEM. It is found that the radiation damage of the catalyst sample usually starts from the interface of Pt/C and primarily occurs in the form of mass loss accompanied by atomic displacement and edge curl. The results indicate the low reliability of the in-situ nano-adhesion measurement. All three chapters serve to expand the fundamental understanding of the microstructure of the catalyst layer, which contribute to the development of a more durable, less expensive and better performing PEMFC.