EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Nanofluid As a Coolant for Electronic Devices

Download or read book Nanofluid As a Coolant for Electronic Devices written by Ali Ijam and published by LAP Lambert Academic Publishing. This book was released on 2012-08 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is discussing about the usage of nanofluid as a coolant for electronic devices. Nanofluids are the suspension of solid nanoparticles in a base fluid. Nanofluids are expected to be a promising coolant candidate for thermal management system of next generation high heat dissipation electronic systems. In this research, thermal conductivity, heat transfer and pumping power for a nanofluid turbulent flow in copper minichannel heat sink is analyzed. Nanofluids with a different volume fraction and with 2 m/s and 6m/s inlet velocities are used.A minichannel heat sink with the bottom analyzed for SiC water nanofluid and TiO2 water nanofluid turbulent flow as a coolant through hydraulics diameters and heat flux boundary condition are assumed.

Book Electronics Cooling

    Book Details:
  • Author : S. M. Sohel Murshed
  • Publisher : BoD – Books on Demand
  • Release : 2016-06-15
  • ISBN : 9535124056
  • Pages : 184 pages

Download or read book Electronics Cooling written by S. M. Sohel Murshed and published by BoD – Books on Demand. This book was released on 2016-06-15 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: Featuring contributions from the renowned researchers and academicians in the field, this book covers key conventional and emerging cooling techniques and coolants for electronics cooling. It includes following thematic topics: - Cooling approaches and coolants - Boiling and phase change-based technologies - Heat pipes-based cooling - Microchannels cooling systems - Heat loop cooling technology - Nanofluids as coolants - Theoretical development for the junction temperature of package chips. This book is intended to be a reference source and guide to researchers, engineers, postgraduate students, and academicians in the fields of thermal management and cooling technologies as well as for people in the electronics and semiconductors industries.

Book Thermal Performance of Nanofluids in Miniature Heat Sinks with Conduits

Download or read book Thermal Performance of Nanofluids in Miniature Heat Sinks with Conduits written by S. Harikrishnan and published by Springer Nature. This book was released on 2022-01-04 with total page 105 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive book focuses on the basic physical features and purpose of nanofluids and miniature heat sinks. The contents demonstrate the design modification, fabrication, experimental investigation, and various applications of miniature heat sinks. The book provides context for thermal performance of miniature heat sinks as well as summaries of experimental results correlations that reflect the current technical innovations are included. This book is a useful reference for both academia and industry alike.

Book Thermal Design of Electronic Equipment

Download or read book Thermal Design of Electronic Equipment written by Ralph Remsburg and published by CRC Press. This book was released on 2017-12-19 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: In a field where change and growth is inevitable, new electronic packaging problems continually arise. Smaller, more powerful devices are prone to overheating, causing intermittent system failures, corrupted signals, lower MTBF, and outright system failure. Since convection cooling is the heat transfer path most engineers take to deal with thermal problems, it is appropriate to gain as much understanding about the underlying mechanisms of fluid motion as possible. Thermal Design of Electronic Equipment is the only book that specifically targets the formulas used by electronic packaging and thermal engineers. It presents heat transfer equations dealing with polyalphaolephin (PAO), silicone oils, perfluorocarbons, and silicate ester-based liquids. Instead of relying on theoretical expressions and text explanations, the author presents empirical formulas and practical techniques that allow you to quickly solve nearly any thermal engineering problem in electronic packaging.

Book Nanoparticle Heat Transfer and Fluid Flow

Download or read book Nanoparticle Heat Transfer and Fluid Flow written by W. J. Minkowycz and published by CRC Press. This book was released on 2012-12-04 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: Featuring contributions by leading researchers in the field, Nanoparticle Heat Transfer and Fluid Flow explores heat transfer and fluid flow processes in nanomaterials and nanofluids, which are becoming increasingly important across the engineering disciplines. The book covers a wide range, from biomedical and energy conversion applications to materials properties, and addresses aspects that are essential for further progress in the field, including numerical quantification, modeling, simulation, and presentation. Topics include: A broad review of nanofluid applications, including industrial heat transfer, biomedical engineering, electronics, energy conversion, membrane filtration, and automotive An overview of thermofluids and their importance in biomedical applications and heat-transfer enhancement A deeper look at biomedical applications such as nanoparticle hyperthermia treatments for cancers Issues in energy conversion from dispersed forms to more concentrated and utilizable forms Issues in nanofluid properties, which are less predictable and less repeatable than those of other media that participate in fluid flow and heat transfer Advances in computational fluid dynamic (CFD) modeling of membrane filtration at the microscale The role of nanofluids as a coolant in microchannel heat transfer for the thermal management of electronic equipment The potential enhancement of natural convection due to nanoparticles Examining key topics and applications in nanoscale heat transfer and fluid flow, this comprehensive book presents the current state of the art and a view of the future. It offers a valuable resource for experts as well as newcomers interested in developing innovative modeling and numerical simulation in this growing field.

Book Hybrid Nanofluids for Convection Heat Transfer

Download or read book Hybrid Nanofluids for Convection Heat Transfer written by Hafiz Muhammad Ali and published by Academic Press. This book was released on 2020-05-15 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hybrid Nanofluids for Convection Heat Transfer discusses how to maximize heat transfer rates with the addition of nanoparticles into conventional heat transfer fluids. The book addresses definitions, preparation techniques, thermophysical properties and heat transfer characteristics with mathematical models, performance-affecting factors, and core applications with implementation challenges of hybrid nanofluids. The work adopts mathematical models and schematic diagrams in review of available experimental methods. It enables readers to create new techniques, resolve existing research problems, and ultimately to implement hybrid nanofluids in convection heat transfer applications. Provides key heat transfer performance and thermophysical characteristics of hybrid nanofluids Reviews parameter selection and property measurement techniques for thermal performance calibration Explores the use of predictive mathematical techniques for experimental properties

Book Heat Transfer Enhancement with Nanofluids

Download or read book Heat Transfer Enhancement with Nanofluids written by Vincenzo Bianco and published by CRC Press. This book was released on 2015-04-01 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanofluids are gaining the attention of scientists and researchers around the world. This new category of heat transfer medium improves the thermal conductivity of fluid by suspending small solid particles within it and offers the possibility of increased heat transfer in a variety of applications. Bringing together expert contributions from

Book Hybrid Nanofluids

Download or read book Hybrid Nanofluids written by Zafar Said and published by Elsevier. This book was released on 2022-01-28 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hybrid Nanofluids: Preparation, Characterization and Applications presents the history of hybrid nanofluids, preparation techniques, thermoelectrical properties, rheological behaviors, optical properties, theoretical modeling and correlations, and the effect of all these factors on potential applications, such as solar energy, electronics cooling, heat exchangers, machining, and refrigeration. Future challenges and future work scope have also been included. The information from this book enables readers to discover novel techniques, resolve existing research limitations, and create novel hybrid nanofluids which can be implemented for heat transfer applications. Describes the characterization, thermophysical and electrical properties of nanofluids Assesses parameter selection and property measurement techniques for the calibration of thermal performance Provides information on theoretical models and correlations for predicting hybrid nanofluids properties from experimental properties

Book Physical and Computational Aspects of Convective Heat Transfer

Download or read book Physical and Computational Aspects of Convective Heat Transfer written by T. Cebeci and published by Springer Science & Business Media. This book was released on 2013-04-18 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is concerned with the transport of thermal energy in flows of practical significance. The temperature distributions which result from convective heat transfer, in contrast to those associated with radiation heat transfer and conduction in solids, are related to velocity characteristics and we have included sufficient information of momentum transfer to make the book self-contained. This is readily achieved because of the close relation ship between the equations which represent conservation of momentum and energy: it is very desirable since convective heat transfer involves flows with large temperature differences, where the equations are coupled through an equation of state, as well as flows with small temperature differences where the energy equation is dependent on the momentum equation but the momentum equation is assumed independent of the energy equation. The equations which represent the conservation of scalar properties, including thermal energy, species concentration and particle number density can be identical in form and solutions obtained in terms of one dependent variable can represent those of another. Thus, although the discussion and arguments of this book are expressed in terms of heat transfer, they are relevant to problems of mass and particle transport. Care is required, however, in making use of these analogies since, for example, identical boundary conditions are not usually achieved in practice and mass transfer can involve more than one dependent variable.

Book Nanofluids

Download or read book Nanofluids written by Sarit K. Das and published by John Wiley & Sons. This book was released on 2007-12-04 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to nanofluids--their properties, synthesis, characterization, and applications Nanofluids are attracting a great deal of interest with their enormous potential to provide enhanced performance properties, particularly with respect to heat transfer. In response, this text takes you on a complete journey into the science and technology of nanofluids. The authors cover both the chemical and physical methods for synthesizing nanofluids, explaining the techniques for creating a stable suspension of nanoparticles. You get an overview of the existing models and experimental techniques used in studying nanofluids, alongside discussions of the challenges and problems associated with some of these models. Next, the authors set forth and explain the heat transfer applications of nanofluids, including microelectronics, fuel cells, and hybrid-powered engines. You also get an introduction to possible future applications in large-scale cooling and biomedicine. This book is the work of leading pioneers in the field, one of whom holds the first U.S. patent for nanofluids. They have combined their own first-hand knowledge with a thorough review of theliterature. Among the key topics are: * Synthesis of nanofluids, including dispersion techniques and characterization methods * Thermal conductivity and thermo-physical properties * Theoretical models and experimental techniques * Heat transfer applications in microelectronics, fuel cells, and vehicle engines This text is written for researchers in any branch of science and technology, without any prerequisite.It therefore includes some basic information describing conduction, convection, and boiling of nanofluids for those readers who may not have adequate background in these areas. Regardless of your background, you'll learn to develop nanofluids not only as coolants, but also for a host ofnew applications on the horizon.

Book Advances in Nanofluid Heat Transfer

Download or read book Advances in Nanofluid Heat Transfer written by Hafiz Muhammad Ali and published by Elsevier. This book was released on 2022-05-28 with total page 589 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Nanofluid Heat Transfer covers the broad definitions, brief history, preparation techniques, thermophysical properties, heat transfer characteristics, and emerging applications of hybrid nanofluids. Starting with the basics, this book advances step-by-step toward advanced topics, with mathematical models, schematic diagrams and discussions of the experimental work of leading researchers. By introducing readers to new techniques, this book helps readers resolve existing problems and implement nanofluids in innovative new applications. This book provides detailed coverage of stability and reliable measurement techniques for nanofluid properties, as well as different kinds of base fluids. Providing a clear understanding of what happens at the nanoscale, the book is written to be used by engineers in industry as well as researchers and graduate students. Covers new applications of nanofluids, along with key challenges encountered in the commercialization of this technology Highlights new nanofluid properties and associated numerical modeling methods Addresses the very latest topics in nanofluids sciences, such as ionic nanofluids

Book Heat Transfer

    Book Details:
  • Author : A Kanni Raj
  • Publisher :
  • Release : 2018-04-13
  • ISBN : 9781980822295
  • Pages : 242 pages

Download or read book Heat Transfer written by A Kanni Raj and published by . This book was released on 2018-04-13 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: The research monograph - HEAT-TRANSFER : Electronics Cooling with Nanofluids Application - is a concise book written exclusively based on my post - doctoral research. It contains chapters on - heat transfer and component cooling, nanoparticles and nanofluids preparation, heat transfer and pressure drop characteristics of various nanofluids in a thin channelled heat sink and also in an electronic heat sink fitted with dynamic mixers, and contains appendices on - calibration curves and uncertainty analysis, test data of thin channelled heat sink and heat sink fitted with dynamic mixer.his book is backed by huge number of references and each reference bears its citation inside various chapters. This book is useful to readers interested in experimenting heat transfer, ie, BE, BTech, ME, MTech, MS, PhD and ScD in Mechanical Engineering and Thermal Engineering.

Book Nanofluid Applications for Advanced Thermal Solutions

Download or read book Nanofluid Applications for Advanced Thermal Solutions written by Shriram S. Sonawane and published by Elsevier. This book was released on 2023-06-28 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanofluid Applications for Advanced Thermal Solutions covers heat transfer applications of nanofluids in a variety of fields and the main techniques used in nanofluid flow and heat transfer analysis. The book features an introduction to heat transfer, nanofluid conduction, convection and nanofluid boiling and provides a thorough understanding of a variety of applications, including the energy storage component of solar PVT systems. It covers fundamental topics such as the analysis and measurement of thermophysical properties, convection, and heat transfer equipment performance, and provides a rigorous framework to assist readers in developing new nanofluid-based devices. Finally, the book explores convective instabilities, nanofluids in porous media, and entropy generation in nanofluids. This will be a valuable resource for upper undergraduate, postgraduate, and doctoral students and researchers in the fields of nanotechnology and nanofluids looking at heat transfer processes in chemical engineering and the petroleum industry. Provides a comprehensive overview of the heat transfer application of nanofluids in a variety of fields Features numerical and experimental investigations of hybrid and mono nanoparticles based nanofluids Explores comparative performance investigations of various nanofluids for absorption/regeneration and metal extraction/stripping operations Provides case examples of operation and scale-up challenges for nanofluid applications in the industrial process

Book Nanofluids and Mass Transfer

Download or read book Nanofluids and Mass Transfer written by Mohammad Reza Rahimpour and published by Elsevier. This book was released on 2021-09-04 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the recent decades, efficiency enhancement of refineries and chemical plants has been become a focus of research and development groups. Use of nanofluids in absorption, regeneration, liquid-liquid extraction and membrane processes can lead to mass transfer and heat transfer enhancement in processes which results in an increased efficiency in all these processes. Nanofluids and Mass Transfer introduces the role of nanofluids in improving mass transfer phenomena and expressing their characteristics and properties. The book also covers the theory and modelling procedures in details and finally illustrates various applications of Nanofluids in mass transfer enhancement in various processes such as absorption, regeneration, liquid-liquid extraction and membrane processes and how can nanofluids increase mass transfer in processes. Introduces specifications of nanofluids and mechanisms of mass transfer enhancement by nanofluids in various mass transfer processes Discusses mass transfer enhancement in various mass transfer processes such as: absorption, regeneration, liquid-liquid extraction and membrane processes Offers modelling mass transfer and flow in nanofluids Challenges industrialization and scale up of nanofluids

Book Preparation  Characterization  Properties  and Application of Nanofluid

Download or read book Preparation Characterization Properties and Application of Nanofluid written by I. M. Mahbubul and published by William Andrew. This book was released on 2018-09-20 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: Preparation, Characterization, Properties and Application of Nanofluid begins with an introduction of colloidal systems and their relation to nanofluid. Special emphasis on the preparation of stable nanofluid and the impact of ultrasonication power on nanofluid preparation is also included, as are characterization and stability measurement techniques. Other topics of note in the book include the thermophysical properties of nanofluids as thermal conductivity, viscosity, and density and specific heat, including the figure of merit of properties. In addition, different parameters, like particle type, size, concentration, liquid type and temperature are discussed based on experimental results, along with a variety of other important topics. The available model and correlations used for nanofluid property calculation are also included. Provides readers with tactics on nanofluid preparation methods, including how to improve their stability Explores the effect of preparation method and stability on thermophysical and rheological properties of nanofluids Assesses the available model and correlations used for nanofluid property calculation

Book Nanofluid Technologies and Thermal Convection Techniques

Download or read book Nanofluid Technologies and Thermal Convection Techniques written by Chand, Ramesh and published by IGI Global. This book was released on 2017-01-10 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emerging developments in nanofluid research have enhanced its range of various industrial applications. When implemented effectively, the use of such fluids offer numerous benefits, particularly in cooling processes. Nanofluid Technologies and Thermal Convection Techniques is a pivotal source of information for theoretical perspectives and investigations on the thermal instability of nanofluids and its various effects. Highlighting relevant studies relating to stationary, double diffusive, and oscillatory convection, this book is ideally designed for professionals, researchers, and practitioners seeking material on the industrial usage of nanofluid technologies.

Book Nanofluids

Download or read book Nanofluids written by Shriram S. Sonawane and published by CRC Press. This book was released on 2024-07-02 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanofluids provides insight to the mathematical, numerical, and experimental methodologies of the industrial application of nanofluids. It covers the fundamentals and applications of nanofluids in heat and mass transfer. Thoroughly covering the thermo-physical and optical properties of nanofluids in various operations, the book highlights the necessary parameters for enhancing their performance. It discusses the application of nanofluids in solar panels, car radiators, boiling operations, and CO2 absorption and regeneration. The book also considers the numeric approach for heat and mass transfer and applications, in addition to the challenges of nanofluids in industrial processes. The book will be a useful reference for researchers and graduate students studying nanotechnology and nanofluids advancements within the fields of mechanical and chemical engineering.